K-purity and orthogonality
Theory and applications of categories, Tome 12 (2004), pp. 355-371.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Adamek and Sousa recently solved the problem of characterizing the subcategories K of a locally $\lambda$-presentable category C which are $\lambda$-orthogonal in C, using their concept of K$\lambda$-pure morphism. We strengthen the latter definition, in order to obtain a characterization of the classes defined by orthogonality with respect to $\lambda$-presentable morphisms (where $f : A \rightarrow B is called $\lambda$-presentable if it is a $\lambda$-presentable object of the comma category A/$\lambda$-presentable morphisms are precisely the pushouts of morphisms between $\lambda$-presentable objects of C.
Classification : 18A20, 18C35, 03C60, 18G05
Keywords: pure morphism, othogonality, injectivity, locally presentable categories, accessible categories
@article{TAC_2004_12_a11,
     author = {Michel Hebert},
     title = {K-purity and orthogonality},
     journal = {Theory and applications of categories},
     pages = {355--371},
     publisher = {mathdoc},
     volume = {12},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2004_12_a11/}
}
TY  - JOUR
AU  - Michel Hebert
TI  - K-purity and orthogonality
JO  - Theory and applications of categories
PY  - 2004
SP  - 355
EP  - 371
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2004_12_a11/
LA  - en
ID  - TAC_2004_12_a11
ER  - 
%0 Journal Article
%A Michel Hebert
%T K-purity and orthogonality
%J Theory and applications of categories
%D 2004
%P 355-371
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2004_12_a11/
%G en
%F TAC_2004_12_a11
Michel Hebert. K-purity and orthogonality. Theory and applications of categories, Tome 12 (2004), pp. 355-371. http://geodesic.mathdoc.fr/item/TAC_2004_12_a11/