Voir la notice de l'article provenant de la source Theory and Applications of Categories website
Protomodular categories were introduced by the first author more than ten years ago. We show that a variety $\mathcal V$ of universal algebras is protomodular if and only if it has 0-ary terms $e_1, ..., e_n$, binary terms $t_1, ..., t_n$, and (n+1)-ary term $t$ satisfying the identities $t(x,t_1(x,y), ...,t_n(x,y)) = y$ and $t_i(x,x) = e_i$ for each $i = 1, ..., n$.
@article{TAC_2003_11_a5, author = {Dominique Bourn and George Janelidze}, title = {Characterization of protomodular varieties of universal algebras}, journal = {Theory and applications of categories}, pages = {143--147}, publisher = {mathdoc}, volume = {11}, year = {2003}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2003_11_a5/} }
TY - JOUR AU - Dominique Bourn AU - George Janelidze TI - Characterization of protomodular varieties of universal algebras JO - Theory and applications of categories PY - 2003 SP - 143 EP - 147 VL - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TAC_2003_11_a5/ LA - en ID - TAC_2003_11_a5 ER -
Dominique Bourn; George Janelidze. Characterization of protomodular varieties of universal algebras. Theory and applications of categories, Tome 11 (2003), pp. 143-147. http://geodesic.mathdoc.fr/item/TAC_2003_11_a5/