The strong amalgamation property and (effective) codescent morphisms
Theory and applications of categories, Tome 11 (2003), pp. 438-449.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Codescent morphisms are described in regular categories which satisfy the so-called strong amalgamation property. Among varieties of universal algebras possessing this property are, as is known, categories of groups, not necessarily associative rings, M-sets (for a monoid M), Lie algebras (over a field), quasi-groups, commutative quasi-groups, Steiner quasi-groups, medial quasi-groups, semilattice$lattices, weakly associative lattices, Boolean algebras, Heyting algebras. It is shown that every codescent morphism of groups is effective.
Classification : 18C20, 18A32, 20J15, 08B25
Keywords: Strong amalgamation property, (effective) codescent morphism, group, variety of universal algebras
@article{TAC_2003_11_a19,
     author = {Dali Zangurashvili},
     title = {The strong amalgamation property and (effective) codescent morphisms},
     journal = {Theory and applications of categories},
     pages = {438--449},
     publisher = {mathdoc},
     volume = {11},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2003_11_a19/}
}
TY  - JOUR
AU  - Dali Zangurashvili
TI  - The strong amalgamation property and (effective) codescent morphisms
JO  - Theory and applications of categories
PY  - 2003
SP  - 438
EP  - 449
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2003_11_a19/
LA  - en
ID  - TAC_2003_11_a19
ER  - 
%0 Journal Article
%A Dali Zangurashvili
%T The strong amalgamation property and (effective) codescent morphisms
%J Theory and applications of categories
%D 2003
%P 438-449
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2003_11_a19/
%G en
%F TAC_2003_11_a19
Dali Zangurashvili. The strong amalgamation property and (effective) codescent morphisms. Theory and applications of categories, Tome 11 (2003), pp. 438-449. http://geodesic.mathdoc.fr/item/TAC_2003_11_a19/