More on injectivity in locally presentable categories
Theory and applications of categories, Tome 10 (2002), pp. 148-161

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Injectivity with respect to morphisms having $\lambda$-presentable domains and codomains is characterized: such injectivity classes are precisely those closed under products, $\lambda$-directed colimits, and $\lambda$-pure subobjects. This sharpens the result of the first two authors (Trans. Amer. Math. Soc. 336 (1993), 785-804). In contrast, for geometric logic an example is found of a class closed under directed colimits and pure subobjects, but not axiomatizable by a geometric theory. A more technical characterization of axiomatizable classes in geometric logic is presented.

Classification : 18C35, 03C99.
Keywords: locally presentable category, injectivity class, geometric logic.
@article{TAC_2002_10_a6,
     author = {J. Rosicky and J. Adamek and F. Borceux},
     title = {More on injectivity in locally presentable categories},
     journal = {Theory and applications of categories},
     pages = {148--161},
     publisher = {mathdoc},
     volume = {10},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2002_10_a6/}
}
TY  - JOUR
AU  - J. Rosicky
AU  - J. Adamek
AU  - F. Borceux
TI  - More on injectivity in locally presentable categories
JO  - Theory and applications of categories
PY  - 2002
SP  - 148
EP  - 161
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2002_10_a6/
LA  - en
ID  - TAC_2002_10_a6
ER  - 
%0 Journal Article
%A J. Rosicky
%A J. Adamek
%A F. Borceux
%T More on injectivity in locally presentable categories
%J Theory and applications of categories
%D 2002
%P 148-161
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2002_10_a6/
%G en
%F TAC_2002_10_a6
J. Rosicky; J. Adamek; F. Borceux. More on injectivity in locally presentable categories. Theory and applications of categories, Tome 10 (2002), pp. 148-161. http://geodesic.mathdoc.fr/item/TAC_2002_10_a6/