Coherence for Factorization Algebras
Theory and applications of categories, Tome 10 (2002), pp. 134-147
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
For the 2-monad $((-)^2,I,C)$ on CAT, with unit $I$ described by identities and multiplication $C$ described by composition, we show that a functor $F : {\cal K}^2 \rightarrow \cal K$ satisfying $FI_{\cal K} = 1_{\cal K}$ admits a unique, normal, pseudo-algebra structure for $(-)^2$ if and only if there is a mere natural isomorphism $F F^2 \rightarrow F C_{\cal K}$. We show that when this is the case the set of all natural transformations $F F^2 \rightarrow F C_{\cal K}$ forms a commutative monoid isomorphic to the centre of $\cal K$.
Classification :
18A32, 18D05.
Keywords: coherence, factorization algebra.
Keywords: coherence, factorization algebra.
@article{TAC_2002_10_a5,
author = {Robert Rosebrugh and R.J. Wood},
title = {Coherence for {Factorization} {Algebras}},
journal = {Theory and applications of categories},
pages = {134--147},
year = {2002},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2002_10_a5/}
}
Robert Rosebrugh; R.J. Wood. Coherence for Factorization Algebras. Theory and applications of categories, Tome 10 (2002), pp. 134-147. http://geodesic.mathdoc.fr/item/TAC_2002_10_a5/