Homology of Lie algebras with $\Lambda/q\Lambda$ coefficients and exact sequences
Theory and applications of categories, Tome 10 (2002), pp. 113-126.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Using the long exact sequence of nonabelian derived functors, an eight term exact sequence of Lie algebra homology with $\Lambda/q\Lambda$ coefficients is obtained, where $\Lambda$ is a ground ring and $q$ is a nonnegative integer. Hopf formulas for the second and third homology of a Lie algebra are proved. The condition for the existence and the description of the universal $q$-central relative extension of a Lie epimorphism in terms of relative homologies are given.
Classification : 18G10, 18G50.
Keywords: Lie algebra, nonabelian derived functor, exact sequence, homology group.
@article{TAC_2002_10_a3,
     author = {Emzar Khmaladze},
     title = {Homology of {Lie} algebras with  $\Lambda/q\Lambda$ coefficients
and exact sequences},
     journal = {Theory and applications of categories},
     pages = {113--126},
     publisher = {mathdoc},
     volume = {10},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2002_10_a3/}
}
TY  - JOUR
AU  - Emzar Khmaladze
TI  - Homology of Lie algebras with  $\Lambda/q\Lambda$ coefficients
and exact sequences
JO  - Theory and applications of categories
PY  - 2002
SP  - 113
EP  - 126
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2002_10_a3/
LA  - en
ID  - TAC_2002_10_a3
ER  - 
%0 Journal Article
%A Emzar Khmaladze
%T Homology of Lie algebras with  $\Lambda/q\Lambda$ coefficients
and exact sequences
%J Theory and applications of categories
%D 2002
%P 113-126
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2002_10_a3/
%G en
%F TAC_2002_10_a3
Emzar Khmaladze. Homology of Lie algebras with  $\Lambda/q\Lambda$ coefficients
and exact sequences. Theory and applications of categories, Tome 10 (2002), pp. 113-126. http://geodesic.mathdoc.fr/item/TAC_2002_10_a3/