Derived Operations in Goguen Categories
Theory and applications of categories, Tome 10 (2002), pp. 220-247.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Goguen categories were introduced in as a suitable categorical description of ${\mathcal L}$-fuzzy relations, i.e., of relations taking values from an arbitrary complete Brouwerian lattice ${\mathcal L}$ instead of the unit interval $[0,1]$ of the real numbers. In this paper we want to study operations on morphisms of a Goguen category which are derived from suitable binary functions on the underlying lattice of scalar elements, i.e., on the abstract counterpart of ${\mathcal L}$.
Classification : 18B10, 03G15.
Keywords: Goguen category, Fuzzy Relation, Dedekind category.
@article{TAC_2002_10_a10,
     author = {Michael Winter},
     title = {Derived {Operations} in {Goguen} {Categories}},
     journal = {Theory and applications of categories},
     pages = {220--247},
     publisher = {mathdoc},
     volume = {10},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2002_10_a10/}
}
TY  - JOUR
AU  - Michael Winter
TI  - Derived Operations in Goguen Categories
JO  - Theory and applications of categories
PY  - 2002
SP  - 220
EP  - 247
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2002_10_a10/
LA  - en
ID  - TAC_2002_10_a10
ER  - 
%0 Journal Article
%A Michael Winter
%T Derived Operations in Goguen Categories
%J Theory and applications of categories
%D 2002
%P 220-247
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2002_10_a10/
%G en
%F TAC_2002_10_a10
Michael Winter. Derived Operations in Goguen Categories. Theory and applications of categories, Tome 10 (2002), pp. 220-247. http://geodesic.mathdoc.fr/item/TAC_2002_10_a10/