How algebraic is algebra?
Theory and applications of categories, Tome 8 (2001), pp. 253-283.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

The 2-category VAR of finitary varieties is not varietal over CAT. We introduce the concept of an algebraically exact category and prove that the 2-category ALG of all algebraically exact categories is an equational hull of VAR w.r.t. all operations with rank. Every algebraically exact category $\cal K$ is complete, exact, and has filtered colimits which (a) commute with finite limits and (b) distribute over products; besides (c) regular epimorphisms in $\cal K$ are product-stable. It is not known whether (a) - (c) characterize algebraic exactness. An equational hull of VAR w.r.t. all operations is also discussed.
Classification : 18C99, 18D99, 08B99.
Keywords: variety, exact category, pseudomonad.
@article{TAC_2001_8_a8,
     author = {J. Adamek and F. W. Lawvere and J. Rosicky},
     title = {How algebraic is algebra?},
     journal = {Theory and applications of categories},
     pages = {253--283},
     publisher = {mathdoc},
     volume = {8},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2001_8_a8/}
}
TY  - JOUR
AU  - J. Adamek
AU  - F. W. Lawvere
AU  - J. Rosicky
TI  - How algebraic is algebra?
JO  - Theory and applications of categories
PY  - 2001
SP  - 253
EP  - 283
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2001_8_a8/
LA  - en
ID  - TAC_2001_8_a8
ER  - 
%0 Journal Article
%A J. Adamek
%A F. W. Lawvere
%A J. Rosicky
%T How algebraic is algebra?
%J Theory and applications of categories
%D 2001
%P 253-283
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2001_8_a8/
%G en
%F TAC_2001_8_a8
J. Adamek; F. W. Lawvere; J. Rosicky. How algebraic is algebra?. Theory and applications of categories, Tome 8 (2001), pp. 253-283. http://geodesic.mathdoc.fr/item/TAC_2001_8_a8/