On Mackey topologies in topological abelian groups
Theory and applications of categories, Tome 8 (2001), pp. 54-62.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Let $\cal C$ be a full subcategory of the category of topological abelian groups and SP$\cal C$ denote the full subcategory of subobjects of products of objects of $\cal C$. We say that SP$\cal C$ has Mackey coreflections if there is a functor that assigns to each object $A$ of SP$\cal C$ an object $\tau A$ that has the same group of characters as $A$ and is the finest topology with that property. We show that the existence of Mackey coreflections in SP$\cal C$ is equivalent to the injectivity of the circle with respect to topological subgroups of groups in $\cal C$.
Classification : 22D35, 22A05, 18A40.
Keywords: Mackey topologies, duality, topological abelian groups.
@article{TAC_2001_8_a3,
     author = {Michael Barr and Heinrich Kleisli},
     title = {On {Mackey} topologies in topological abelian groups},
     journal = {Theory and applications of categories},
     pages = {54--62},
     publisher = {mathdoc},
     volume = {8},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2001_8_a3/}
}
TY  - JOUR
AU  - Michael Barr
AU  - Heinrich Kleisli
TI  - On Mackey topologies in topological abelian groups
JO  - Theory and applications of categories
PY  - 2001
SP  - 54
EP  - 62
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2001_8_a3/
LA  - en
ID  - TAC_2001_8_a3
ER  - 
%0 Journal Article
%A Michael Barr
%A Heinrich Kleisli
%T On Mackey topologies in topological abelian groups
%J Theory and applications of categories
%D 2001
%P 54-62
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2001_8_a3/
%G en
%F TAC_2001_8_a3
Michael Barr; Heinrich Kleisli. On Mackey topologies in topological abelian groups. Theory and applications of categories, Tome 8 (2001), pp. 54-62. http://geodesic.mathdoc.fr/item/TAC_2001_8_a3/