$V$-Cat is locally presentable or locally bounded if $V$ is so
Theory and applications of categories, Tome 8 (2001), pp. 555-575.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We show, for a monoidal closed category $V = (V_0,\otimes,I)$, that the category $V$-Cat of small $V$-categories is locally $\lambda$-presentable if $V_0$ is so, and that it is locally $\lambda$-bounded if the closed category $V$ is so, meaning that $V_0$ is locally $\lambda$-bounded and that a side condition involving the monoidal structure is satisfied.
Classification : 18C35, 18D20, 18A32.
Keywords: enriched category, locally presentable category, locally bounded category.
@article{TAC_2001_8_a22,
     author = {G. M. Kelly and Stephen Lack},
     title = {$V${-Cat} is locally presentable or locally bounded if $V$ is so},
     journal = {Theory and applications of categories},
     pages = {555--575},
     publisher = {mathdoc},
     volume = {8},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2001_8_a22/}
}
TY  - JOUR
AU  - G. M. Kelly
AU  - Stephen Lack
TI  - $V$-Cat is locally presentable or locally bounded if $V$ is so
JO  - Theory and applications of categories
PY  - 2001
SP  - 555
EP  - 575
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2001_8_a22/
LA  - en
ID  - TAC_2001_8_a22
ER  - 
%0 Journal Article
%A G. M. Kelly
%A Stephen Lack
%T $V$-Cat is locally presentable or locally bounded if $V$ is so
%J Theory and applications of categories
%D 2001
%P 555-575
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2001_8_a22/
%G en
%F TAC_2001_8_a22
G. M. Kelly; Stephen Lack. $V$-Cat is locally presentable or locally bounded if $V$ is so. Theory and applications of categories, Tome 8 (2001), pp. 555-575. http://geodesic.mathdoc.fr/item/TAC_2001_8_a22/