The extensive completion of a distributive category
Theory and applications of categories, Tome 8 (2001), pp. 541-554.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

A category with finite products and finite coproducts is said to be distributive if the canonical map $A \times B + A \times C \to A \times (B + C)$ is invertible for all objects $A$, $B$, and $C$. Given a distributive category $\cal D$, we describe a universal functor $\cal D \to \cal D_{ex}$ preserving finite products and finite coproducts, for which $\cal D_{ex}$ is extensive; that is, for all objects $A$ and $B$ the functor $\cal D_{ex}/A \times \cal D_{ex}/B \to \cal D_{ex}/(A + B)$ is an equivalence of categories. As an application, we show that a distributive category $\cal D$ has a full distributive embedding into the product of an extensive category with products and a distributive preorder.
Classification : 18D99, 18A40, 18B15.
Keywords: distributive category, extensive category, free construction.
@article{TAC_2001_8_a21,
     author = {J.R.B. Cockett and Stephen Lack},
     title = {The extensive completion of a distributive category},
     journal = {Theory and applications of categories},
     pages = {541--554},
     publisher = {mathdoc},
     volume = {8},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2001_8_a21/}
}
TY  - JOUR
AU  - J.R.B. Cockett
AU  - Stephen Lack
TI  - The extensive completion of a distributive category
JO  - Theory and applications of categories
PY  - 2001
SP  - 541
EP  - 554
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2001_8_a21/
LA  - en
ID  - TAC_2001_8_a21
ER  - 
%0 Journal Article
%A J.R.B. Cockett
%A Stephen Lack
%T The extensive completion of a distributive category
%J Theory and applications of categories
%D 2001
%P 541-554
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2001_8_a21/
%G en
%F TAC_2001_8_a21
J.R.B. Cockett; Stephen Lack. The extensive completion of a distributive category. Theory and applications of categories, Tome 8 (2001), pp. 541-554. http://geodesic.mathdoc.fr/item/TAC_2001_8_a21/