Closure operators in exact completions
Theory and applications of categories, Tome 8 (2001), pp. 522-540.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

In analogy with the relation between closure operators in presheaf toposes and Grothendieck topologies, we identify the structure in a category with finite limits that corresponds to universal closure operators in its regular and exact completions. The study of separated objects in exact completions will then allow us to give conceptual proofs of local cartesian closure of different categories of pseudo equivalence relations. Finally, we characterize when certain categories of sheaves are toposes.
Classification : 18A35, 18F10, 18B25.
Keywords: Exact completions, closure operators, toposes.
@article{TAC_2001_8_a20,
     author = {Matias Menni},
     title = {Closure operators in exact completions},
     journal = {Theory and applications of categories},
     pages = {522--540},
     publisher = {mathdoc},
     volume = {8},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2001_8_a20/}
}
TY  - JOUR
AU  - Matias Menni
TI  - Closure operators in exact completions
JO  - Theory and applications of categories
PY  - 2001
SP  - 522
EP  - 540
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2001_8_a20/
LA  - en
ID  - TAC_2001_8_a20
ER  - 
%0 Journal Article
%A Matias Menni
%T Closure operators in exact completions
%J Theory and applications of categories
%D 2001
%P 522-540
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2001_8_a20/
%G en
%F TAC_2001_8_a20
Matias Menni. Closure operators in exact completions. Theory and applications of categories, Tome 8 (2001), pp. 522-540. http://geodesic.mathdoc.fr/item/TAC_2001_8_a20/