On sifted colimits and generalized varieties
Theory and applications of categories, Tome 8 (2001), pp. 33-53.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Filtered colimits, i.e., colimits over schemes $\cal D$ such that $\cal D$-colimits in $\Set$ commute with finite limits, have a natural generalization to sifted colimits: these are colimits over schemes $\cal D$ such that $\cal D$-colimits in $\Set$ commute with finite products. An important example: reflexive coequalizers are sifted colimits. Generalized varieties are defined as free completions of small categories under sifted-colimits (analogously to finitely accessible categories which are free filtered-colimit completions of small categories). Among complete categories, generalized varieties are precisely the varieties. Further examples: category of fields, category of linearly ordered sets, category of nonempty sets.
Classification :
Keywords:
@article{TAC_2001_8_a2,
     author = {J. Adamek and J. Rosicky},
     title = {On sifted colimits and generalized varieties},
     journal = {Theory and applications of categories},
     pages = {33--53},
     publisher = {mathdoc},
     volume = {8},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2001_8_a2/}
}
TY  - JOUR
AU  - J. Adamek
AU  - J. Rosicky
TI  - On sifted colimits and generalized varieties
JO  - Theory and applications of categories
PY  - 2001
SP  - 33
EP  - 53
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2001_8_a2/
LA  - en
ID  - TAC_2001_8_a2
ER  - 
%0 Journal Article
%A J. Adamek
%A J. Rosicky
%T On sifted colimits and generalized varieties
%J Theory and applications of categories
%D 2001
%P 33-53
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2001_8_a2/
%G en
%F TAC_2001_8_a2
J. Adamek; J. Rosicky. On sifted colimits and generalized varieties. Theory and applications of categories, Tome 8 (2001), pp. 33-53. http://geodesic.mathdoc.fr/item/TAC_2001_8_a2/