On Functors Which Are Lax Epimorphisms
Theory and applications of categories, Tome 8 (2001), pp. 509-521.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We show that lax epimorphisms in the category Cat are precisely the functors $P : {\cal E} \to {\cal B}$ for which the functor $P^{*}: [{\cal B}, Set] \to [{\cal E}, Set]$ of composition with $P$ is fully faithful. We present two other characterizations. Firstly, lax epimorphisms are precisely the ``absolutely dense'' functors, i.e., functors $P$ such that every object $B$ of ${\cal B}$ is an absolute colimit of all arrows $P(E)\to B$ for $E$ in ${\cal E}$. Secondly, lax epimorphisms are precisely the functors $P$ such that for every morphism $f$ of ${\cal B}$ the category of all factorizations through objects of $P[{\cal E}]$ is connected. A relationship between pseudoepimorphisms and lax epimorphisms is discussed.
Classification : 18A20.
Keywords: lax epimorphism.
@article{TAC_2001_8_a19,
     author = {Jiri Adamek and Robert El Bashir and Manuela Sobral and Jiri Velebil},
     title = {On {Functors} {Which} {Are} {Lax} {Epimorphisms}},
     journal = {Theory and applications of categories},
     pages = {509--521},
     publisher = {mathdoc},
     volume = {8},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2001_8_a19/}
}
TY  - JOUR
AU  - Jiri Adamek
AU  - Robert El Bashir
AU  - Manuela Sobral
AU  - Jiri Velebil
TI  - On Functors Which Are Lax Epimorphisms
JO  - Theory and applications of categories
PY  - 2001
SP  - 509
EP  - 521
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2001_8_a19/
LA  - en
ID  - TAC_2001_8_a19
ER  - 
%0 Journal Article
%A Jiri Adamek
%A Robert El Bashir
%A Manuela Sobral
%A Jiri Velebil
%T On Functors Which Are Lax Epimorphisms
%J Theory and applications of categories
%D 2001
%P 509-521
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2001_8_a19/
%G en
%F TAC_2001_8_a19
Jiri Adamek; Robert El Bashir; Manuela Sobral; Jiri Velebil. On Functors Which Are Lax Epimorphisms. Theory and applications of categories, Tome 8 (2001), pp. 509-521. http://geodesic.mathdoc.fr/item/TAC_2001_8_a19/