Central extensions in Mal'tsev varieties
Theory and applications of categories, Tome 7 (2000), pp. 219-226.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We show that every algebraically-central extension in a Mal'tsev variety - that is, every surjective homomorphism $f : A \longrightarrow B$ whose kernel-congruence is contained in the centre of $A$, as defined using the theory of commutators - is also a central extension in the sense of categorical Galois theory; this was previously known only for varieties of $\Omega$-groups, while its converse is easily seen to hold for any congruence-modular variety.
Classification : 08B05, 08C05, 18G50.
Keywords:
@article{TAC_2000_7_a9,
     author = {G. Janelidze and G.M. Kelly},
     title = {Central extensions in {Mal'tsev} varieties},
     journal = {Theory and applications of categories},
     pages = {219--226},
     publisher = {mathdoc},
     volume = {7},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2000_7_a9/}
}
TY  - JOUR
AU  - G. Janelidze
AU  - G.M. Kelly
TI  - Central extensions in Mal'tsev varieties
JO  - Theory and applications of categories
PY  - 2000
SP  - 219
EP  - 226
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2000_7_a9/
LA  - en
ID  - TAC_2000_7_a9
ER  - 
%0 Journal Article
%A G. Janelidze
%A G.M. Kelly
%T Central extensions in Mal'tsev varieties
%J Theory and applications of categories
%D 2000
%P 219-226
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2000_7_a9/
%G en
%F TAC_2000_7_a9
G. Janelidze; G.M. Kelly. Central extensions in Mal'tsev varieties. Theory and applications of categories, Tome 7 (2000), pp. 219-226. http://geodesic.mathdoc.fr/item/TAC_2000_7_a9/