Normal functors and strong protomodularity
Theory and applications of categories, Tome 7 (2000), pp. 205-218.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

The notion of normal subobject having an intrinsic meaning in any protomodular category, we introduce the notion of normal functor, namely left exact conservative functor which reflects normal subobjects. The point is that for the category {\bf Gp} of groups the change of base functors, with respect to the fibration of pointed objects, are not only conservative (this is the definition of a protomodular category), but also normal. This leads to the notion of strongly protomodular category. Some of their properties are given, the main one being that this notion is inherited by the slice categories.
Classification : 18D05, 08B05, 18G30, 20L17.
Keywords: abstract normal subobject, preservation and reflection of normal subobject, Mal�cev and protomodular categories.
@article{TAC_2000_7_a8,
     author = {Dominique Bourn},
     title = {Normal functors and strong protomodularity},
     journal = {Theory and applications of categories},
     pages = {205--218},
     publisher = {mathdoc},
     volume = {7},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2000_7_a8/}
}
TY  - JOUR
AU  - Dominique Bourn
TI  - Normal functors and strong protomodularity
JO  - Theory and applications of categories
PY  - 2000
SP  - 205
EP  - 218
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2000_7_a8/
LA  - en
ID  - TAC_2000_7_a8
ER  - 
%0 Journal Article
%A Dominique Bourn
%T Normal functors and strong protomodularity
%J Theory and applications of categories
%D 2000
%P 205-218
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2000_7_a8/
%G en
%F TAC_2000_7_a8
Dominique Bourn. Normal functors and strong protomodularity. Theory and applications of categories, Tome 7 (2000), pp. 205-218. http://geodesic.mathdoc.fr/item/TAC_2000_7_a8/