Balanced Coalgebroids
Theory and applications of categories, Tome 7 (2000), pp. 71-147.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

A balanced coalgebroid is a ${\cal V}^{op}$-category with extra structure ensuring that its category of representations is a balanced monoidal category. We show, in a sense to be made precise, that a balanced structure on a coalgebroid may be reconstructed from the corresponding structure on its category of representations. This includes the reconstruction of dual quasi-bialgebras, quasi-triangular dual quasi-bialgebras, and balanced quasi-triangular dual quasi-bialgebras; the latter of which is a quantum group when equipped with a compatible antipode. As an application we construct a balanced coalgebroid whose category of representations is equivalent to the symmetric monoidal category of chain complexes. The appendix provides the definitions of a braided monoidal bicategory and sylleptic monoidal bicategory.
Classification : 18D20, 18D05, 16W50, 81R50.
Keywords: Symmetric monoidal bicategories, balanced Vop-categories, coalgebras, quantum groups.
@article{TAC_2000_7_a5,
     author = {Paddy McCrudden},
     title = {Balanced {Coalgebroids}},
     journal = {Theory and applications of categories},
     pages = {71--147},
     publisher = {mathdoc},
     volume = {7},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2000_7_a5/}
}
TY  - JOUR
AU  - Paddy McCrudden
TI  - Balanced Coalgebroids
JO  - Theory and applications of categories
PY  - 2000
SP  - 71
EP  - 147
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2000_7_a5/
LA  - en
ID  - TAC_2000_7_a5
ER  - 
%0 Journal Article
%A Paddy McCrudden
%T Balanced Coalgebroids
%J Theory and applications of categories
%D 2000
%P 71-147
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2000_7_a5/
%G en
%F TAC_2000_7_a5
Paddy McCrudden. Balanced Coalgebroids. Theory and applications of categories, Tome 7 (2000), pp. 71-147. http://geodesic.mathdoc.fr/item/TAC_2000_7_a5/