A tensor product for Gray-categories
Theory and applications of categories, Tome 5 (1999), pp. 12-69.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

In this paper I extend Gray's tensor product of 2-categories to a new tensor product of Gray-categories. I give a description in terms of generators and relations, one of the relations being an ``interchange'' relation, and a description similar to Gray's description of his tensor product of 2-categories. I show that this tensor product of Gray-categories satisfies a universal property with respect to quasi-functors of two variables, which are defined in terms of lax-natural transformations between Gray-categories. The main result is that this tensor product is part of a monoidal structure on Gray-Cat, the proof requiring interchange in an essential way. However, this does not give a monoidal {(bi)closed} structure, precisely because of interchange. And although I define composition of lax-natural transformations, this composite need not be a lax-natural transformation again, making Gray-Cat only a partial Gray-Cat$_\otimes$-CATegory.
Classification : 18D05 (18A05, 18D10, 18D20).
Keywords:
@article{TAC_1999_5_a1,
     author = {Sjoerd Crans},
     title = {A tensor product for {Gray-categories}},
     journal = {Theory and applications of categories},
     pages = {12--69},
     publisher = {mathdoc},
     volume = {5},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_1999_5_a1/}
}
TY  - JOUR
AU  - Sjoerd Crans
TI  - A tensor product for Gray-categories
JO  - Theory and applications of categories
PY  - 1999
SP  - 12
EP  - 69
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_1999_5_a1/
LA  - en
ID  - TAC_1999_5_a1
ER  - 
%0 Journal Article
%A Sjoerd Crans
%T A tensor product for Gray-categories
%J Theory and applications of categories
%D 1999
%P 12-69
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_1999_5_a1/
%G en
%F TAC_1999_5_a1
Sjoerd Crans. A tensor product for Gray-categories. Theory and applications of categories, Tome 5 (1999), pp. 12-69. http://geodesic.mathdoc.fr/item/TAC_1999_5_a1/