Simplicial and categorical diagrams, and their equivariant applications
Theory and applications of categories, Tome 4 (1998), pp. 73-81
Voir la notice de l'article provenant de la source Theory and Applications of Categories website
We show that the homotopy category of simplicial diagrams $I-SS$ indexed by a small category $I$ is equivalent to a homotopy category of $SS\downarrow NI$ simplicial sets over the nerve $NI$. Then their equivalences, by means of the nerve functor N : Cat --> SS$ from the category $Cat$ of small categories, with respective homotopy categories associated to $Cat$ are established. Consequently, an equivariant simplicial version of the Whitehead Theorem is derived.
Classification :
Primary 55P15, 55U10, secondary 18G30, 55P91.
Keywords: comma category, Grothendieck construction, homotopy colimit, pull-back, simplicial set, small category.
Keywords: comma category, Grothendieck construction, homotopy colimit, pull-back, simplicial set, small category.
@article{TAC_1998_4_a3,
author = {Rudolf Fritsch and Marek Golasinski},
title = {Simplicial and categorical diagrams, and their equivariant applications},
journal = {Theory and applications of categories},
pages = {73--81},
publisher = {mathdoc},
volume = {4},
year = {1998},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_1998_4_a3/}
}
TY - JOUR AU - Rudolf Fritsch AU - Marek Golasinski TI - Simplicial and categorical diagrams, and their equivariant applications JO - Theory and applications of categories PY - 1998 SP - 73 EP - 81 VL - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TAC_1998_4_a3/ LA - en ID - TAC_1998_4_a3 ER -
Rudolf Fritsch; Marek Golasinski. Simplicial and categorical diagrams, and their equivariant applications. Theory and applications of categories, Tome 4 (1998), pp. 73-81. http://geodesic.mathdoc.fr/item/TAC_1998_4_a3/