Glueing Analysis for Complemented Subtoposes
Theory and applications of categories, Tome 2 (1996), pp. 100-112

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We prove how any (elementary) topos may be reconstructed from the data of two complemented subtoposes together with a pair of left exact ``glueing functors''. This generalizes the classical glueing theorem for toposes, which deals with the special case of an open subtopos and its closed complement.

Our glueing analysis applies in a particularly simple form to a locally closed subtopos and its complement, and one of the important properties (prolongation by zero for abelian groups) can be succinctly described in terms of it.

Classification : 18B25.
Keywords: Artin glueing, complemented subtoposes, complemented sublocale, locally closed subtoposes, locally closed sublocale, prolongation by 0, extension by 0.
@article{TAC_1996_2_a8,
     author = {Anders Kock and Till Plewe},
     title = {Glueing {Analysis} for {Complemented} {Subtoposes}},
     journal = {Theory and applications of categories},
     pages = {100--112},
     publisher = {mathdoc},
     volume = {2},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_1996_2_a8/}
}
TY  - JOUR
AU  - Anders Kock
AU  - Till Plewe
TI  - Glueing Analysis for Complemented Subtoposes
JO  - Theory and applications of categories
PY  - 1996
SP  - 100
EP  - 112
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_1996_2_a8/
LA  - en
ID  - TAC_1996_2_a8
ER  - 
%0 Journal Article
%A Anders Kock
%A Till Plewe
%T Glueing Analysis for Complemented Subtoposes
%J Theory and applications of categories
%D 1996
%P 100-112
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_1996_2_a8/
%G en
%F TAC_1996_2_a8
Anders Kock; Till Plewe. Glueing Analysis for Complemented Subtoposes. Theory and applications of categories, Tome 2 (1996), pp. 100-112. http://geodesic.mathdoc.fr/item/TAC_1996_2_a8/