Remarks on Quintessential and Persistent Localizations
Theory and applications of categories, Tome 2 (1996), pp. 90-99

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We define a localization L of a category E to be quintessential if the left adjoint to the inclusion functor is also right adjoint to it, and persistent if L is closed under subobjects in E. We show that quintessential localizations of an arbitrary Cauchy-complete category correspond to idempotent natural endomorphisms of its identity functor, and that they are necessarily persistent. Our investigation of persistent localizations is largely restricted to the case when E is a topos: we show that persistence is equivalence to the closure of L under finite coproducts and quotients, and that it implies that L is coreflective as well as reflective, at least provided E admits a geometric morphism to a Boolean topos. However, we provide examples to show that the reflector and coreflector need not coincide.

Classification : 18A40, 18B25.
Keywords:
@article{TAC_1996_2_a7,
     author = {P.T. Johnstone},
     title = {Remarks on {Quintessential} and {Persistent} {Localizations}},
     journal = {Theory and applications of categories},
     pages = {90--99},
     publisher = {mathdoc},
     volume = {2},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_1996_2_a7/}
}
TY  - JOUR
AU  - P.T. Johnstone
TI  - Remarks on Quintessential and Persistent Localizations
JO  - Theory and applications of categories
PY  - 1996
SP  - 90
EP  - 99
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_1996_2_a7/
LA  - en
ID  - TAC_1996_2_a7
ER  - 
%0 Journal Article
%A P.T. Johnstone
%T Remarks on Quintessential and Persistent Localizations
%J Theory and applications of categories
%D 1996
%P 90-99
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_1996_2_a7/
%G en
%F TAC_1996_2_a7
P.T. Johnstone. Remarks on Quintessential and Persistent Localizations. Theory and applications of categories, Tome 2 (1996), pp. 90-99. http://geodesic.mathdoc.fr/item/TAC_1996_2_a7/