A Counterexample to a Conjecture of Barr
Theory and applications of categories, Tome 2 (1996), pp. 36-39

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We discuss two versions of a conjecture attributed to M. Barr. The Harrison cohomology of a commutative algebra is known to coincide with the Andre/Quillen cohomology over a field of characteristic zero but not in prime characteristics. The conjecture is that a modified version of Harrison cohomology, taking into account torsion, always agrees with Andre/Quillen cohomology. We give a counterexample.

Classification : 13D03, 18C15.
Keywords: Hochschild homology, Harrison homology, Andr'e/Quillen homology.
@article{TAC_1996_2_a2,
     author = {Sarah Whitehouse},
     title = {A {Counterexample} to a {Conjecture} of {Barr}},
     journal = {Theory and applications of categories},
     pages = {36--39},
     publisher = {mathdoc},
     volume = {2},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_1996_2_a2/}
}
TY  - JOUR
AU  - Sarah Whitehouse
TI  - A Counterexample to a Conjecture of Barr
JO  - Theory and applications of categories
PY  - 1996
SP  - 36
EP  - 39
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_1996_2_a2/
LA  - en
ID  - TAC_1996_2_a2
ER  - 
%0 Journal Article
%A Sarah Whitehouse
%T A Counterexample to a Conjecture of Barr
%J Theory and applications of categories
%D 1996
%P 36-39
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_1996_2_a2/
%G en
%F TAC_1996_2_a2
Sarah Whitehouse. A Counterexample to a Conjecture of Barr. Theory and applications of categories, Tome 2 (1996), pp. 36-39. http://geodesic.mathdoc.fr/item/TAC_1996_2_a2/