A forbidden-suborder characterization of binarily-composable diagrams in double categories
Theory and applications of categories, Tome 1 (1995), pp. 146-153

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Tilings of rectangles with rectangles, and tileorders (the associated double order structures) are useful as ``templates'' for composition in double categories. In this context, it is particularly relevant to ask which tilings may be joined together, two rectangles at a time, to form one large rectangle. We characterize such tilings via forbidden suborders, in a manner analogous to Kuratowski's characterization of planar graphs.

Classification : 18D05, 05B45.
Keywords: Double categories, tileorders, binary composition, Hasse diagrams, forbidden suborders.
@article{TAC_1995_1_a6,
     author = {Robert Dawson},
     title = {A forbidden-suborder characterization of binarily-composable diagrams in double categories},
     journal = {Theory and applications of categories},
     pages = {146--153},
     publisher = {mathdoc},
     volume = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_1995_1_a6/}
}
TY  - JOUR
AU  - Robert Dawson
TI  - A forbidden-suborder characterization of binarily-composable diagrams in double categories
JO  - Theory and applications of categories
PY  - 1995
SP  - 146
EP  - 153
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_1995_1_a6/
LA  - en
ID  - TAC_1995_1_a6
ER  - 
%0 Journal Article
%A Robert Dawson
%T A forbidden-suborder characterization of binarily-composable diagrams in double categories
%J Theory and applications of categories
%D 1995
%P 146-153
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_1995_1_a6/
%G en
%F TAC_1995_1_a6
Robert Dawson. A forbidden-suborder characterization of binarily-composable diagrams in double categories. Theory and applications of categories, Tome 1 (1995), pp. 146-153. http://geodesic.mathdoc.fr/item/TAC_1995_1_a6/