Kan extensions along promonoidal functors
Theory and applications of categories, Tome 1 (1995), pp. 72-78
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
Strong promonoidal functors are defined. Left Kan extension (also called "existential quantification") along a strong promonoidal functor is shown to be a strong monoidal functor. A construction for the free monoidal category on a promonoidal category is provided. A Fourier-like transform of presheaves is defined and shown to take convolution product to cartesian product.
Classification :
18D10.
Keywords: monoidal functor, promonoidal category, Kan extension, Fourier transform, convolution tensor product.
Keywords: monoidal functor, promonoidal category, Kan extension, Fourier transform, convolution tensor product.
@article{TAC_1995_1_a3,
author = {Brian Day and Ross Street},
title = {Kan extensions along promonoidal functors},
journal = {Theory and applications of categories},
pages = {72--78},
year = {1995},
volume = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_1995_1_a3/}
}
Brian Day; Ross Street. Kan extensions along promonoidal functors. Theory and applications of categories, Tome 1 (1995), pp. 72-78. http://geodesic.mathdoc.fr/item/TAC_1995_1_a3/