Kan extensions along promonoidal functors
Theory and applications of categories, Tome 1 (1995), pp. 72-78

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Strong promonoidal functors are defined. Left Kan extension (also called "existential quantification") along a strong promonoidal functor is shown to be a strong monoidal functor. A construction for the free monoidal category on a promonoidal category is provided. A Fourier-like transform of presheaves is defined and shown to take convolution product to cartesian product.

Classification : 18D10.
Keywords: monoidal functor, promonoidal category, Kan extension, Fourier transform, convolution tensor product.
@article{TAC_1995_1_a3,
     author = {Brian Day and Ross Street},
     title = {Kan extensions along promonoidal functors},
     journal = {Theory and applications of categories},
     pages = {72--78},
     publisher = {mathdoc},
     volume = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_1995_1_a3/}
}
TY  - JOUR
AU  - Brian Day
AU  - Ross Street
TI  - Kan extensions along promonoidal functors
JO  - Theory and applications of categories
PY  - 1995
SP  - 72
EP  - 78
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_1995_1_a3/
LA  - en
ID  - TAC_1995_1_a3
ER  - 
%0 Journal Article
%A Brian Day
%A Ross Street
%T Kan extensions along promonoidal functors
%J Theory and applications of categories
%D 1995
%P 72-78
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_1995_1_a3/
%G en
%F TAC_1995_1_a3
Brian Day; Ross Street. Kan extensions along promonoidal functors. Theory and applications of categories, Tome 1 (1995), pp. 72-78. http://geodesic.mathdoc.fr/item/TAC_1995_1_a3/