The Krzyz conjecture and convex univalent functions
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 27 (2025) no. 1, pp. 81-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtained the sharp estimates of the moduli of the initial Taylor coefficients for functions $f$ of the class $B$ of bounded nonvanishing functions in the unit circle. Two types of estimates are obtained: one for “large” values of $|f(0)|$ and another one for “small” values of $|f(0)|$. The first type of estimates is asymptotic in the sense that it applies to an increasing number of initial coefficients as $|f(0)|$ increases. Similarly, the second type of estimates is asymptotic in the sense that it applies to an increasing number of initial coefficients as $|f(0)|$ decreases. Both types of estimates are deduced using methods of subordinate function theory and the Caratheodory-Toeplitz theorem for the Caratheodory class. This became possible due to the relation we found between the coefficients of convex univalent functions (class $S^0$) and the coefficients of the majorizing functions in the studied subclasses of the class $B$. The bounds for the applicability of the method are provided depending on $|f(0)|$ and on the coefficient number. The obtained results are applied to the theory of Laguerre polynomials. These results are compared with the previously known ones. The methods outlined here can be applied to arbitrary classes of subordinate functions.
Keywords: the Krzyz conjecture, bounded nonvanishing functions, convex functions, subordinate functions, Caratheodory class, Taylor coefficient estimates
Mots-clés : Laguerre polynomials
@article{SVMO_2025_27_1_a5,
     author = {D. L. Stupin},
     title = {The {Krzyz} conjecture and convex univalent functions},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {81--96},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2025},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2025_27_1_a5/}
}
TY  - JOUR
AU  - D. L. Stupin
TI  - The Krzyz conjecture and convex univalent functions
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2025
SP  - 81
EP  - 96
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2025_27_1_a5/
LA  - ru
ID  - SVMO_2025_27_1_a5
ER  - 
%0 Journal Article
%A D. L. Stupin
%T The Krzyz conjecture and convex univalent functions
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2025
%P 81-96
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2025_27_1_a5/
%G ru
%F SVMO_2025_27_1_a5
D. L. Stupin. The Krzyz conjecture and convex univalent functions. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 27 (2025) no. 1, pp. 81-96. http://geodesic.mathdoc.fr/item/SVMO_2025_27_1_a5/

[1] J. G. Krzyz, “Coefficient problem for bounded nonvanishing functions”, Ann. Polon. Math., 70 (1968), 314

[2] J. A. Hummel, S. Scheinberg, L. A. Zalcman, “A coefficient problem for bounded nonvanishing functions”, J.d'Analyse Mathematique, 31 (1977), 169–190 | DOI | MR

[3] W. Szapiel, “A new approach to the Krzyz conjecture”, Ann. Univ. M. Curie-Sklodowska. Sec. A, 48 (1994), 169–192 | MR

[4] N. Samaris, “A proof of Krzyz's conjecture for the fifth coefficient”, Compl. Var. Theory and Appl., 48 (2003), 48–82 | DOI | MR

[5] D. L. Stupin, “Odin metod otsenki modulei teilorovskikh koeffitsientov podchinennykh funktsii”, Vestnik VGU. Fizika. Matematika, 2024, no. 2, 71–84 | DOI | MR

[6] D. L. Stupin, “Novyi metod otsenki modulei nachalnykh teilorovskikh koeffitsientov na klasse ogranichennykh ne obraschayuschikhsya v nul funktsii”, Vestnik rossiiskikh universitetov. Matematika, 29:145 (2024), 98–120 | DOI

[7] W. Rogosinski, “On the coefficients of subordinate functions”, Proc. London Math. Soc., 48 (1943), 48–82 | DOI | MR

[8] D. L. Stupin, “Problema koeffitsientov dlya ogranichennykh funktsii i ee prilozheniya”, Vestnik rossiiskikh universitetov. Matematika, 28:143 (2023), 277–297 | DOI

[9] D. L. Stupin, “Tochnye otsenki koeffitsientov v probleme Kzhizha”, Primenenie funktsionalnogo analiza v teorii priblizhenii, 2010, 52–60, Tver

[10] D. L. Stupin, Electronic archive / Cornell University Library, 2011, 7 pp. | DOI

[11] D. L. Stupin, “Asimptoticheskie otsenki koeffitsientov v probleme Kzhizha”, Kompleksnyi analiz i prilozheniya: Materialy VI Petrozavodskoi mezhdunarodnoi konferentsii, 2012, 69–74 https://books.google.ru/books?id=sYG4AAAAIAAJ, Petrozavodsk

[12] I. A. Aleksandrov, Konformnye otobrazheniya odnosvyaznykh i mnogosvyaznykh oblastei, Izdatelstvo Tomskogo universiteta, Tomsk, 1976, 156 pp.

[13] I. M. Galperin, “Nekotorye otsenki dlya ogranichennykh v edinichnom kruge funktsii”, UMN, 20:1(121) (1965), 197–202 | MR

[14] E. Lindelöf, “Mémorie sur certaines inégalités dans la théorie des fonctions monogènes et sur quelques properiétés nouvelles de ces fonctions dans le voisinage d'un point singulier essentiel”, Acta Soc. Sci. Fenn., 35:7 (1909), 1–35

[15] J. E. Littlewood, Lectures on the theory of functions, Oxford university press, 1947, 251 pp. | MR

[16] R. Peretz, “Applications of subordination theory to the class of bounded nonvanishing functions”, Compl. Var., 17:3-4 (1992), 213–222 | DOI | MR

[17] C. Carathéodory, “Über die Variabilitätsbereich des Fourierschen Konstanten von Positiv Harmonischen Funktion”, Rendiconti Circ. Mat., 32 (1911), 193–217, di Palermo. | DOI

[18] D. L. Stupin, “Problema koeffitsientov dlya funktsii, otobrazhayuschikh krug v obobschennyi krug i zadacha Karateodori-Feiera”, Primenenie funktsionalnogo analiza v teorii priblizhenii, 2012, 45–74, Tver

[19] Z. Lewandowski, J. Szynal, “An upper bound for the Laguerre polynomials”, J. Comp. Appl. Math., 99 (1998), 529–533 | DOI | MR

[20] G. Schober, Univalent Functions — Selected Topics, Springer-Verlag, 1975 | MR

[21] S. V. Romanova, “Asimptoticheskie otsenki lineinykh funktsionalov dlya ogranichennykh funktsii, ne prinimayuschikh nulevogo znacheniya”, Izvestiya vuzov. Matematika, 2002, no. 11, 83–85 | DOI

[22] D. V. Prokhorov, S. V. Romanova, “Lokalnye ekstremalnye zadachi dlya ogranichennykh analiticheskikh funktsii bez nulei”, Izvestiya RAN, Seriya matematicheskaya, 70:4 (2006), 209–224 | DOI | MR