Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2025_27_1_a5, author = {D. L. Stupin}, title = {The {Krzyz} conjecture and convex univalent functions}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {81--96}, publisher = {mathdoc}, volume = {27}, number = {1}, year = {2025}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2025_27_1_a5/} }
D. L. Stupin. The Krzyz conjecture and convex univalent functions. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 27 (2025) no. 1, pp. 81-96. http://geodesic.mathdoc.fr/item/SVMO_2025_27_1_a5/
[1] J. G. Krzyz, “Coefficient problem for bounded nonvanishing functions”, Ann. Polon. Math., 70 (1968), 314
[2] J. A. Hummel, S. Scheinberg, L. A. Zalcman, “A coefficient problem for bounded nonvanishing functions”, J.d'Analyse Mathematique, 31 (1977), 169–190 | DOI | MR
[3] W. Szapiel, “A new approach to the Krzyz conjecture”, Ann. Univ. M. Curie-Sklodowska. Sec. A, 48 (1994), 169–192 | MR
[4] N. Samaris, “A proof of Krzyz's conjecture for the fifth coefficient”, Compl. Var. Theory and Appl., 48 (2003), 48–82 | DOI | MR
[5] D. L. Stupin, “Odin metod otsenki modulei teilorovskikh koeffitsientov podchinennykh funktsii”, Vestnik VGU. Fizika. Matematika, 2024, no. 2, 71–84 | DOI | MR
[6] D. L. Stupin, “Novyi metod otsenki modulei nachalnykh teilorovskikh koeffitsientov na klasse ogranichennykh ne obraschayuschikhsya v nul funktsii”, Vestnik rossiiskikh universitetov. Matematika, 29:145 (2024), 98–120 | DOI
[7] W. Rogosinski, “On the coefficients of subordinate functions”, Proc. London Math. Soc., 48 (1943), 48–82 | DOI | MR
[8] D. L. Stupin, “Problema koeffitsientov dlya ogranichennykh funktsii i ee prilozheniya”, Vestnik rossiiskikh universitetov. Matematika, 28:143 (2023), 277–297 | DOI
[9] D. L. Stupin, “Tochnye otsenki koeffitsientov v probleme Kzhizha”, Primenenie funktsionalnogo analiza v teorii priblizhenii, 2010, 52–60, Tver
[10] D. L. Stupin, Electronic archive / Cornell University Library, 2011, 7 pp. | DOI
[11] D. L. Stupin, “Asimptoticheskie otsenki koeffitsientov v probleme Kzhizha”, Kompleksnyi analiz i prilozheniya: Materialy VI Petrozavodskoi mezhdunarodnoi konferentsii, 2012, 69–74 https://books.google.ru/books?id=sYG4AAAAIAAJ, Petrozavodsk
[12] I. A. Aleksandrov, Konformnye otobrazheniya odnosvyaznykh i mnogosvyaznykh oblastei, Izdatelstvo Tomskogo universiteta, Tomsk, 1976, 156 pp.
[13] I. M. Galperin, “Nekotorye otsenki dlya ogranichennykh v edinichnom kruge funktsii”, UMN, 20:1(121) (1965), 197–202 | MR
[14] E. Lindelöf, “Mémorie sur certaines inégalités dans la théorie des fonctions monogènes et sur quelques properiétés nouvelles de ces fonctions dans le voisinage d'un point singulier essentiel”, Acta Soc. Sci. Fenn., 35:7 (1909), 1–35
[15] J. E. Littlewood, Lectures on the theory of functions, Oxford university press, 1947, 251 pp. | MR
[16] R. Peretz, “Applications of subordination theory to the class of bounded nonvanishing functions”, Compl. Var., 17:3-4 (1992), 213–222 | DOI | MR
[17] C. Carathéodory, “Über die Variabilitätsbereich des Fourierschen Konstanten von Positiv Harmonischen Funktion”, Rendiconti Circ. Mat., 32 (1911), 193–217, di Palermo. | DOI
[18] D. L. Stupin, “Problema koeffitsientov dlya funktsii, otobrazhayuschikh krug v obobschennyi krug i zadacha Karateodori-Feiera”, Primenenie funktsionalnogo analiza v teorii priblizhenii, 2012, 45–74, Tver
[19] Z. Lewandowski, J. Szynal, “An upper bound for the Laguerre polynomials”, J. Comp. Appl. Math., 99 (1998), 529–533 | DOI | MR
[20] G. Schober, Univalent Functions — Selected Topics, Springer-Verlag, 1975 | MR
[21] S. V. Romanova, “Asimptoticheskie otsenki lineinykh funktsionalov dlya ogranichennykh funktsii, ne prinimayuschikh nulevogo znacheniya”, Izvestiya vuzov. Matematika, 2002, no. 11, 83–85 | DOI
[22] D. V. Prokhorov, S. V. Romanova, “Lokalnye ekstremalnye zadachi dlya ogranichennykh analiticheskikh funktsii bez nulei”, Izvestiya RAN, Seriya matematicheskaya, 70:4 (2006), 209–224 | DOI | MR