On the similarity of upper triangular nilpotent matrices of the $4$th and the $5$th orders to a generalized Jordan block over the ring of integers
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 27 (2025) no. 1, pp. 69-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper conditions for similarity of an upper triangular nilpotent matrix and a generalized Jordan block (i. e. a matrix where only the elements of the first superdiagonal are non-zero) are considered. The problem is solved over the ring of integers. Necessary and sufficient conditions for similarity to a generalized Jordan block are obtained for the following classes of matrices: the fourth-order matrices of rank $3$ with nonzero elements of the first superdiagonal; the fifth-order matrices of rank $4$ and some additional restrictions on the elements of the first superdiagonal. These conditions are formulated in simple terms of divisibility and greatest common divisors of matrix elements. It is proved that if the first and last elements of the first superdiagonal are coprime, and the product of the remaining elements of this superdiagonal is equal to $1,$ then this matrix is similar to a generalized Jordan block. To obtain the similarity criterion, the following statement is used: if two nilpotent upper triangular matrices of order $n$ and rank $n - 1$ are similar over the ring of integers, then among the transforming matrices there is a triangular matrix. This statement reduces the problem of recognizing similarity to solving a system of linear equations in integers. The main tool for obtaining the results in the article is the criterion of consistency of a system of linear equations over the ring of integers.
Keywords: similarity of matrices, generalized Jordan block, ring of integers, upper triangular matrix
Mots-clés : nilpotent matrix
@article{SVMO_2025_27_1_a4,
     author = {S. V. Sidorov and G. V. Utkin},
     title = {On the similarity of upper triangular nilpotent matrices of the $4$th and the $5$th orders to a generalized {Jordan} block over the ring of integers},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {69--80},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2025},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2025_27_1_a4/}
}
TY  - JOUR
AU  - S. V. Sidorov
AU  - G. V. Utkin
TI  - On the similarity of upper triangular nilpotent matrices of the $4$th and the $5$th orders to a generalized Jordan block over the ring of integers
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2025
SP  - 69
EP  - 80
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2025_27_1_a4/
LA  - ru
ID  - SVMO_2025_27_1_a4
ER  - 
%0 Journal Article
%A S. V. Sidorov
%A G. V. Utkin
%T On the similarity of upper triangular nilpotent matrices of the $4$th and the $5$th orders to a generalized Jordan block over the ring of integers
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2025
%P 69-80
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2025_27_1_a4/
%G ru
%F SVMO_2025_27_1_a4
S. V. Sidorov; G. V. Utkin. On the similarity of upper triangular nilpotent matrices of the $4$th and the $5$th orders to a generalized Jordan block over the ring of integers. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 27 (2025) no. 1, pp. 69-80. http://geodesic.mathdoc.fr/item/SVMO_2025_27_1_a4/

[1] F. R. Gantmacher, “The Theory of Matrices”, M. The Science, 1988, 552 (In Russ.) | MR

[2] S. V. Sidorov, E. E. Chilina, “O negiperbolicheskikh algebraicheskikh avtomorfizmakh dvumernogo tora”, Zhurnal SVMO, 23:3 (2021), 295–307 | DOI

[3] V. V. Gorbatsevich, “Compact solvmanifolds of dimension at most $4$”, Siberian Mathematical Journal, 50:2 (2009), 239–252 | DOI | MR

[4] L. M. Lerman, K. N. Trifonov, “Symplectic partially hyperbolic automorphisms of $6$-torus”, Journal of Geometry and Physics, 195 (2024), 105038 | DOI | MR

[5] H. Appelgate, H. Onishi, “The similarity problem $3\times3$ integer matrices”, Linear Algebra Appl., 42:2 (1982), 159–174 | DOI | MR

[6] S. V. Sidorov, “O podobii matrits tretego poryadka nad koltsom tselykh chisel, imeyuschikh privodimyi kharakteristicheskii mnogochlen”, Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo, 172:1 (2009), 119–127

[7] S. V. Sidorov, Vydelenie effektivno razreshimykh klassov v zadache podobiya matrits nad koltsom tselykh chisel, dis. kand. fiz.-mat. nauk utv. 21.03.16, N. Novgorod, 2015, 121 pp.

[8] V. N. Shevchenko, S. V. Sidorov, “O podobii matrits vtorogo poryadka nad koltsom tselykh chisel”, Izvestiya vysshikh uchebnykh zavedenii. Matematika, 50:4 (2006), 56–63 | MR

[9] M. Newman, Integral matrices, Academic Press, N. Y., London., 1972 | MR

[10] S. V. Sidorov, “O podobii matrits s tselochislennym spektrom nad koltsom tselykh chisel”, Izvestiya vysshikh uchebnykh zavedenii. Matematika, 172:3 (2011), 86–94

[11] S. V. Sidorov, G. V. Utkin, “O podobii nad koltsom tselykh chisel nekotorykh nilpotentnykh matrits maksimalnogo ranga”, Zhurnal SVMO, 25:4 (2023), 284–298 | DOI

[12] G. V. Utkin, “Kriterii podobiya nad koltsom tselykh chisel nekotorykh nilpotentnykh matrits pyatogo poryadka”, Matematicheskoe modelirovanie i superkompyuternye tekhnologii: Trudy XXIII Mezhdunarodnoi konferentsii, Nizhnii Novgorod, 13–16 noyabrya 2023 goda., 2023, 154–157, Natsionalnyi issledovatelskii Nizhegorodskii gosudarstvennyi universitet im. N.I. Lobachevskogo

[13] S. V. Sidorov, “O podobii nekotorykh tselochislennykh matrits s edinstvennym sobstvennym znacheniem nad koltsom tselykh chisel”, Matem. zametki, 105:5 (2019), 763–770 | DOI | MR

[14] D. Husert, Similarity of integer matrices, PhD Thesis, University of Paderborn, 2017, 147 pp.

[15] A. Schrijver, Theory of Linear and Integer Programming, Wiley, 1998, 464 pp. | MR