Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2025_27_1_a4, author = {S. V. Sidorov and G. V. Utkin}, title = {On the similarity of upper triangular nilpotent matrices of the $4$th and the $5$th orders to a generalized {Jordan} block over the ring of integers}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {69--80}, publisher = {mathdoc}, volume = {27}, number = {1}, year = {2025}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2025_27_1_a4/} }
TY - JOUR AU - S. V. Sidorov AU - G. V. Utkin TI - On the similarity of upper triangular nilpotent matrices of the $4$th and the $5$th orders to a generalized Jordan block over the ring of integers JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2025 SP - 69 EP - 80 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2025_27_1_a4/ LA - ru ID - SVMO_2025_27_1_a4 ER -
%0 Journal Article %A S. V. Sidorov %A G. V. Utkin %T On the similarity of upper triangular nilpotent matrices of the $4$th and the $5$th orders to a generalized Jordan block over the ring of integers %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2025 %P 69-80 %V 27 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2025_27_1_a4/ %G ru %F SVMO_2025_27_1_a4
S. V. Sidorov; G. V. Utkin. On the similarity of upper triangular nilpotent matrices of the $4$th and the $5$th orders to a generalized Jordan block over the ring of integers. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 27 (2025) no. 1, pp. 69-80. http://geodesic.mathdoc.fr/item/SVMO_2025_27_1_a4/
[1] F. R. Gantmacher, “The Theory of Matrices”, M. The Science, 1988, 552 (In Russ.) | MR
[2] S. V. Sidorov, E. E. Chilina, “O negiperbolicheskikh algebraicheskikh avtomorfizmakh dvumernogo tora”, Zhurnal SVMO, 23:3 (2021), 295–307 | DOI
[3] V. V. Gorbatsevich, “Compact solvmanifolds of dimension at most $4$”, Siberian Mathematical Journal, 50:2 (2009), 239–252 | DOI | MR
[4] L. M. Lerman, K. N. Trifonov, “Symplectic partially hyperbolic automorphisms of $6$-torus”, Journal of Geometry and Physics, 195 (2024), 105038 | DOI | MR
[5] H. Appelgate, H. Onishi, “The similarity problem $3\times3$ integer matrices”, Linear Algebra Appl., 42:2 (1982), 159–174 | DOI | MR
[6] S. V. Sidorov, “O podobii matrits tretego poryadka nad koltsom tselykh chisel, imeyuschikh privodimyi kharakteristicheskii mnogochlen”, Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo, 172:1 (2009), 119–127
[7] S. V. Sidorov, Vydelenie effektivno razreshimykh klassov v zadache podobiya matrits nad koltsom tselykh chisel, dis. kand. fiz.-mat. nauk utv. 21.03.16, N. Novgorod, 2015, 121 pp.
[8] V. N. Shevchenko, S. V. Sidorov, “O podobii matrits vtorogo poryadka nad koltsom tselykh chisel”, Izvestiya vysshikh uchebnykh zavedenii. Matematika, 50:4 (2006), 56–63 | MR
[9] M. Newman, Integral matrices, Academic Press, N. Y., London., 1972 | MR
[10] S. V. Sidorov, “O podobii matrits s tselochislennym spektrom nad koltsom tselykh chisel”, Izvestiya vysshikh uchebnykh zavedenii. Matematika, 172:3 (2011), 86–94
[11] S. V. Sidorov, G. V. Utkin, “O podobii nad koltsom tselykh chisel nekotorykh nilpotentnykh matrits maksimalnogo ranga”, Zhurnal SVMO, 25:4 (2023), 284–298 | DOI
[12] G. V. Utkin, “Kriterii podobiya nad koltsom tselykh chisel nekotorykh nilpotentnykh matrits pyatogo poryadka”, Matematicheskoe modelirovanie i superkompyuternye tekhnologii: Trudy XXIII Mezhdunarodnoi konferentsii, Nizhnii Novgorod, 13–16 noyabrya 2023 goda., 2023, 154–157, Natsionalnyi issledovatelskii Nizhegorodskii gosudarstvennyi universitet im. N.I. Lobachevskogo
[13] S. V. Sidorov, “O podobii nekotorykh tselochislennykh matrits s edinstvennym sobstvennym znacheniem nad koltsom tselykh chisel”, Matem. zametki, 105:5 (2019), 763–770 | DOI | MR
[14] D. Husert, Similarity of integer matrices, PhD Thesis, University of Paderborn, 2017, 147 pp.
[15] A. Schrijver, Theory of Linear and Integer Programming, Wiley, 1998, 464 pp. | MR