Group classification of nonlinear time-fractional dual-phase-lag heat equation with a small parameter
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 27 (2025) no. 1, pp. 49-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we solve the group classification problem for a nonlinear one-dimensional time-fractional heat conduction equation with full memory and dual-phase-lag, including thermal relaxation and thermal damping. The characteristic times of relaxation processes are assumed to be small enough and therefore a small parameter for fractional differential relaxation terms is introduced. All thermal properties of a medium are considered as functions of temperature. Group classification is performed with respect to groups of approximate point transformations (groups of approximate symmetries) admitted by the equation up to equivalence transformations. We prove that generally the equation admits five-parameter group of approximate transformations, and the cases of its extension to seven- and nine-parameters groups are found. Also, it is shown that the considered nonlinear equation has an infinite approximate symmetry group if the corresponding unperturbed equation is linear. We find that the equation in question always exactly inherits the symmetries of the unperturbed equation. The obtained results make it possible to construct approximately invariant solutions of equation under consideration. In particular, it follows from the classification found that the equation always has a traveling wave solution. The self-similar solutions can be constructed only if the medium thermal properties have power-law dependences on temperature. Ansatzes of these types of solutions are obtained and symmetry reductions of the equation under consideration to the corresponding ordinary fractional differential equations are performed.
Keywords: time-fractional heat equation, Gerasimov–Caputo fractional derivative, small parameter, admitted approximate transformations group, approximately-invariant solution
@article{SVMO_2025_27_1_a3,
     author = {V. O. Lukashchuk and S. Yu. Lukashchuk},
     title = {Group classification of nonlinear time-fractional dual-phase-lag heat equation with a small parameter},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {49--68},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2025},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2025_27_1_a3/}
}
TY  - JOUR
AU  - V. O. Lukashchuk
AU  - S. Yu. Lukashchuk
TI  - Group classification of nonlinear time-fractional dual-phase-lag heat equation with a small parameter
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2025
SP  - 49
EP  - 68
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2025_27_1_a3/
LA  - ru
ID  - SVMO_2025_27_1_a3
ER  - 
%0 Journal Article
%A V. O. Lukashchuk
%A S. Yu. Lukashchuk
%T Group classification of nonlinear time-fractional dual-phase-lag heat equation with a small parameter
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2025
%P 49-68
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2025_27_1_a3/
%G ru
%F SVMO_2025_27_1_a3
V. O. Lukashchuk; S. Yu. Lukashchuk. Group classification of nonlinear time-fractional dual-phase-lag heat equation with a small parameter. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 27 (2025) no. 1, pp. 49-68. http://geodesic.mathdoc.fr/item/SVMO_2025_27_1_a3/

[1] L. V. Ovsyannikov, Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978, 400 pp.

[2] N. Kh. Ibragimov, Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983, 280 pp. | MR

[3] P. Olver, Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989, 639 pp.

[4] CRC Handbook of Lie Group Analysis of Differential Equations, CRC Press, Boca Raton, FL, 448 pp.

[5] CRC Handbook of Lie Group Analysis of Differential Equations, ed. N. H. Ibragimov, CRC Press, Boca Raton, FL, 576 pp.

[6] CRC Handbook of Lie Group Analysis of Differential Equations, ed. N. H. Ibragimov, CRC Press, Boca Raton, FL, 560 pp.

[7] Yu. N. Grigoriev, N. H. Ibragimov, V. F. Kovalev, S. V. Meleshko, Symmetries of integro-differential equations: with applications in mechanics and plasma physics, Springer, Dordrecht, 2010, XIII+305 pp. | MR

[8] Yu. N. Grigorev, V. F. Kovalev, S. V. Meleshko, Simmetrii nelokalnykh uravnenii: Teoriya i prilozheniya, Nauka, Novosibirsk, 2018, 436 pp.

[9] R. K. Gazizov, A. A. Kasatkin, S. Yu. Lukashchuk, “Symmetries and group invariant solutions of fractional ordinary differential equations”, Fractional Differential Equations, De Gruyter, Boston, 2019, 65–90 | DOI | MR

[10] R. K. Gazizov, A. A. Kasatkin, S. Yu. Lukashchuk, “Symmetries, conservation laws and group invariant solutions of fractional PDEs”, Fractional Differential Equations, eds. A. Kochubei, Yu. Luchko, De Gruyter, Boston, 2019, 353–382 | DOI | MR

[11] V. A. Baikov, R. K. Gazizov, N. Kh. Ibragimov, “Priblizhennye simmetrii”, Matem. sb., 136:4 (1988), 435–450

[12] V. A. Baikov, R. K. Gazizov, N. Kh. Ibragimov, “Metody vozmuschenii v gruppovom analize”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Nov. dostizh., 34 (1989), 85–147

[13] V. A. Baikov, R. K. Gazizov, N. Kh. Ibragimov, “Priblizhennye simmetrii i zakony sokhraneniya”, Tr. MIAN, 200 (1991), 35–45

[14] V. A. Baikov, R. K. Gazizov, N. Kh. Ibragimov, “Priblizhennye gruppy preobrazovanii”, Differents. uravneniya, 29:10 (1993), 1712–1732 | MR

[15] R. K. Gazizov, S. Yu. Lukashchuk, “Approximations of Fractional Differential Equations and Approximate Symmetries”, IFAC-PapersOnLine, 50:1 (2017), 14022–14027 | DOI

[16] S. Yu. Lukashchuk, R. D. Saburova, “Approximate symmetry group classification for a nonlinear fractional filtration equation of diffusion-wave type”, Nonlinear Dyn., 93:2 (2018), 295–305 | DOI

[17] S. Yu. Lukashchuk, “Approximate conservation laws for fractional differential equations”, Commun. Nonlinear Sci. Numer. Simul., 68 (2019), 147–159 | DOI | MR

[18] S. Lie, “Classification und integration von gewohnlichen differential-gleichungen zwischen x, y, die gruppe von transformationen gestatten”, Arch. Math. Natur. Christiania., 9 (1883), 371–393

[19] L. V. Ovsyannikov, “Gruppovaya klassifikatsiya uravnenii vida $y''=f(x,y)$”, Prikl. mekh. tekhn. fiz., 45:2 (2004), 5–10 | MR

[20] L. V. Ovsyannikov, “Gruppovye svoistva uravneniya nelineinoi teploprovodnosti”, Dokl. AN SSSR, 125:3 (1959), 492–295

[21] V. A. Dorodnitsyn, “Ob invariantnykh resheniyakh uravneniya nelineinoi teploprovodnosti s istochnikom”, Zh. vychisl. matem. i matem. fiz., 22:6 (1982), 1393–1400 | MR

[22] S. Yu. Lukashchuk, A. V. Makunin, “Group classification of nonlinear time-fractional diffusion equation with a source term”, Appl. Math. Comput., 257 (2015), 335–343 | DOI | MR

[23] S. Yu. Lukaschuk, “Simmetriinaya reduktsiya i invariantnye resheniya nelineinogo drobno-differentsialnogo uravneniya anomalnoi diffuzii s istochnikom”, fimskii matematicheskii zhurnal, 8:4 (2016), 114–126

[24] S. Yu. Lukaschuk, “Gruppovaya klassifikatsiya odnogo nelineinogo priblizhennogo uravneniya subdiffuzii”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki., 20:4 (2016), 603–619 | DOI

[25] A. V. Lykov, Teoriya teploprovodnosti, Vysshaya shkola, M., 1967, 600 pp.

[26] A. V. Kostanovskii, M. E. Kostanovskaya, “Kriterii primeneniya parabolicheskogo uravneniya teploprovodnosti”, Pisma v ZhTF, 34:12 (2008), 6–11

[27] T. Q. Qiu, C. L. Tien, “Heat Transfer Mechanisms During Short-Pulse Laser Heating of Metals”, J. Heat Transfer., 115:4 (1993), 835–841 | DOI | MR

[28] H. D. Wang, B. Y. Cao, Z. Y. Guo, “Non-Fourier Heat Conduction in Carbon Nanotubes”, J. Heat Transfer, 134:5 (2012), 051004 | DOI

[29] W. Roetzel, N. Putra, S. K. Das, “Experiment and analysis for non-Fourier conduction in materials with non-homogeneous inner structure”, Int. J. Therm. Sci., 42:6 (2003), 541–552 | DOI

[30] A. I. Zhmakin, “Teploprovodnost za predelami zakona Fure”, ZhTF, 91:1 (2021), 5–25 | DOI

[31] C. Cattaneo, “A form of heat equation which eliminates the paradox of instantaneous propagation”, Comptes Rendus de l’Academie des Sciences, 247 (1958), 431–433 | MR

[32] P. Vernotte, “Paradoxes in the continuous theory of the heat equation”, Comptes Rendus de l’Academie des Sciences, 246 (1958), 3154–3155 | MR

[33] D. Y. Tzou, “A unified approach for heat conduction from macro to micro-scales”, ASME J. Heat Transfer., 117 (1995), 8–16 | DOI

[34] H.-Y. Xu, X.-Y. Jiang, “Time fractional dual-phase-lag heat conduction equation”, Chin. Phys. B., 24:3 (2015), 034401 | DOI

[35] H. Sobhani, A. Azimi, A. Noghrehabadi, M. Mozafarifard, “Numerical study and parameters estimation of anomalous diffusion process in porous media based on variable-order time fractional dual-phase-lag model”, Numerical Heat Transfer, Part A: Applications, 83:7 (2023), 679–710 | DOI

[36] Q. Zhuang, B. Yu, X. Jiang, “An inverse problem of parameter estimation for time-fractional heat conduction in a composite medium using carbon–carbon experimental data”, Phys. B: Condens. Matter., 456 (2015), 9–15 | DOI

[37] M. H. Fotovvat, Z. Shomali, “A time-fractional dual-phase-lag framework to investigate transistors with TMTC channels (TiS3, 520In4Se3) and size-dependent properties”, Micro and Nanostructures, 168 (2022), 207304 | DOI

[38] S. Yu. Lukashchuk, “A semi-explicit algorithm for parameters estimation in a time-fractional dual-phase-lag heat conduction model”, Modelling, 5:3 (2024), 776–796 | DOI

[39] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006, 523 pp. | MR

[40] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987, 688 pp.

[41] Akhatov I. Sh., Gazizov R. K., Ibragimov N. Kh., “Nelokalnye simmetrii. Evristicheskii podkhod”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Nov. do-stizh., 34 (1989), 3–83