Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2025_27_1_a3, author = {V. O. Lukashchuk and S. Yu. Lukashchuk}, title = {Group classification of nonlinear time-fractional dual-phase-lag heat equation with a small parameter}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {49--68}, publisher = {mathdoc}, volume = {27}, number = {1}, year = {2025}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2025_27_1_a3/} }
TY - JOUR AU - V. O. Lukashchuk AU - S. Yu. Lukashchuk TI - Group classification of nonlinear time-fractional dual-phase-lag heat equation with a small parameter JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2025 SP - 49 EP - 68 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2025_27_1_a3/ LA - ru ID - SVMO_2025_27_1_a3 ER -
%0 Journal Article %A V. O. Lukashchuk %A S. Yu. Lukashchuk %T Group classification of nonlinear time-fractional dual-phase-lag heat equation with a small parameter %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2025 %P 49-68 %V 27 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2025_27_1_a3/ %G ru %F SVMO_2025_27_1_a3
V. O. Lukashchuk; S. Yu. Lukashchuk. Group classification of nonlinear time-fractional dual-phase-lag heat equation with a small parameter. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 27 (2025) no. 1, pp. 49-68. http://geodesic.mathdoc.fr/item/SVMO_2025_27_1_a3/
[1] L. V. Ovsyannikov, Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978, 400 pp.
[2] N. Kh. Ibragimov, Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983, 280 pp. | MR
[3] P. Olver, Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989, 639 pp.
[4] CRC Handbook of Lie Group Analysis of Differential Equations, CRC Press, Boca Raton, FL, 448 pp.
[5] CRC Handbook of Lie Group Analysis of Differential Equations, ed. N. H. Ibragimov, CRC Press, Boca Raton, FL, 576 pp.
[6] CRC Handbook of Lie Group Analysis of Differential Equations, ed. N. H. Ibragimov, CRC Press, Boca Raton, FL, 560 pp.
[7] Yu. N. Grigoriev, N. H. Ibragimov, V. F. Kovalev, S. V. Meleshko, Symmetries of integro-differential equations: with applications in mechanics and plasma physics, Springer, Dordrecht, 2010, XIII+305 pp. | MR
[8] Yu. N. Grigorev, V. F. Kovalev, S. V. Meleshko, Simmetrii nelokalnykh uravnenii: Teoriya i prilozheniya, Nauka, Novosibirsk, 2018, 436 pp.
[9] R. K. Gazizov, A. A. Kasatkin, S. Yu. Lukashchuk, “Symmetries and group invariant solutions of fractional ordinary differential equations”, Fractional Differential Equations, De Gruyter, Boston, 2019, 65–90 | DOI | MR
[10] R. K. Gazizov, A. A. Kasatkin, S. Yu. Lukashchuk, “Symmetries, conservation laws and group invariant solutions of fractional PDEs”, Fractional Differential Equations, eds. A. Kochubei, Yu. Luchko, De Gruyter, Boston, 2019, 353–382 | DOI | MR
[11] V. A. Baikov, R. K. Gazizov, N. Kh. Ibragimov, “Priblizhennye simmetrii”, Matem. sb., 136:4 (1988), 435–450
[12] V. A. Baikov, R. K. Gazizov, N. Kh. Ibragimov, “Metody vozmuschenii v gruppovom analize”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Nov. dostizh., 34 (1989), 85–147
[13] V. A. Baikov, R. K. Gazizov, N. Kh. Ibragimov, “Priblizhennye simmetrii i zakony sokhraneniya”, Tr. MIAN, 200 (1991), 35–45
[14] V. A. Baikov, R. K. Gazizov, N. Kh. Ibragimov, “Priblizhennye gruppy preobrazovanii”, Differents. uravneniya, 29:10 (1993), 1712–1732 | MR
[15] R. K. Gazizov, S. Yu. Lukashchuk, “Approximations of Fractional Differential Equations and Approximate Symmetries”, IFAC-PapersOnLine, 50:1 (2017), 14022–14027 | DOI
[16] S. Yu. Lukashchuk, R. D. Saburova, “Approximate symmetry group classification for a nonlinear fractional filtration equation of diffusion-wave type”, Nonlinear Dyn., 93:2 (2018), 295–305 | DOI
[17] S. Yu. Lukashchuk, “Approximate conservation laws for fractional differential equations”, Commun. Nonlinear Sci. Numer. Simul., 68 (2019), 147–159 | DOI | MR
[18] S. Lie, “Classification und integration von gewohnlichen differential-gleichungen zwischen x, y, die gruppe von transformationen gestatten”, Arch. Math. Natur. Christiania., 9 (1883), 371–393
[19] L. V. Ovsyannikov, “Gruppovaya klassifikatsiya uravnenii vida $y''=f(x,y)$”, Prikl. mekh. tekhn. fiz., 45:2 (2004), 5–10 | MR
[20] L. V. Ovsyannikov, “Gruppovye svoistva uravneniya nelineinoi teploprovodnosti”, Dokl. AN SSSR, 125:3 (1959), 492–295
[21] V. A. Dorodnitsyn, “Ob invariantnykh resheniyakh uravneniya nelineinoi teploprovodnosti s istochnikom”, Zh. vychisl. matem. i matem. fiz., 22:6 (1982), 1393–1400 | MR
[22] S. Yu. Lukashchuk, A. V. Makunin, “Group classification of nonlinear time-fractional diffusion equation with a source term”, Appl. Math. Comput., 257 (2015), 335–343 | DOI | MR
[23] S. Yu. Lukaschuk, “Simmetriinaya reduktsiya i invariantnye resheniya nelineinogo drobno-differentsialnogo uravneniya anomalnoi diffuzii s istochnikom”, fimskii matematicheskii zhurnal, 8:4 (2016), 114–126
[24] S. Yu. Lukaschuk, “Gruppovaya klassifikatsiya odnogo nelineinogo priblizhennogo uravneniya subdiffuzii”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki., 20:4 (2016), 603–619 | DOI
[25] A. V. Lykov, Teoriya teploprovodnosti, Vysshaya shkola, M., 1967, 600 pp.
[26] A. V. Kostanovskii, M. E. Kostanovskaya, “Kriterii primeneniya parabolicheskogo uravneniya teploprovodnosti”, Pisma v ZhTF, 34:12 (2008), 6–11
[27] T. Q. Qiu, C. L. Tien, “Heat Transfer Mechanisms During Short-Pulse Laser Heating of Metals”, J. Heat Transfer., 115:4 (1993), 835–841 | DOI | MR
[28] H. D. Wang, B. Y. Cao, Z. Y. Guo, “Non-Fourier Heat Conduction in Carbon Nanotubes”, J. Heat Transfer, 134:5 (2012), 051004 | DOI
[29] W. Roetzel, N. Putra, S. K. Das, “Experiment and analysis for non-Fourier conduction in materials with non-homogeneous inner structure”, Int. J. Therm. Sci., 42:6 (2003), 541–552 | DOI
[30] A. I. Zhmakin, “Teploprovodnost za predelami zakona Fure”, ZhTF, 91:1 (2021), 5–25 | DOI
[31] C. Cattaneo, “A form of heat equation which eliminates the paradox of instantaneous propagation”, Comptes Rendus de l’Academie des Sciences, 247 (1958), 431–433 | MR
[32] P. Vernotte, “Paradoxes in the continuous theory of the heat equation”, Comptes Rendus de l’Academie des Sciences, 246 (1958), 3154–3155 | MR
[33] D. Y. Tzou, “A unified approach for heat conduction from macro to micro-scales”, ASME J. Heat Transfer., 117 (1995), 8–16 | DOI
[34] H.-Y. Xu, X.-Y. Jiang, “Time fractional dual-phase-lag heat conduction equation”, Chin. Phys. B., 24:3 (2015), 034401 | DOI
[35] H. Sobhani, A. Azimi, A. Noghrehabadi, M. Mozafarifard, “Numerical study and parameters estimation of anomalous diffusion process in porous media based on variable-order time fractional dual-phase-lag model”, Numerical Heat Transfer, Part A: Applications, 83:7 (2023), 679–710 | DOI
[36] Q. Zhuang, B. Yu, X. Jiang, “An inverse problem of parameter estimation for time-fractional heat conduction in a composite medium using carbon–carbon experimental data”, Phys. B: Condens. Matter., 456 (2015), 9–15 | DOI
[37] M. H. Fotovvat, Z. Shomali, “A time-fractional dual-phase-lag framework to investigate transistors with TMTC channels (TiS3, 520In4Se3) and size-dependent properties”, Micro and Nanostructures, 168 (2022), 207304 | DOI
[38] S. Yu. Lukashchuk, “A semi-explicit algorithm for parameters estimation in a time-fractional dual-phase-lag heat conduction model”, Modelling, 5:3 (2024), 776–796 | DOI
[39] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006, 523 pp. | MR
[40] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987, 688 pp.
[41] Akhatov I. Sh., Gazizov R. K., Ibragimov N. Kh., “Nelokalnye simmetrii. Evristicheskii podkhod”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Nov. do-stizh., 34 (1989), 3–83