Fundamental representations of orthogonal Lie algebra and new simple subalgebras of nonalternating Hamiltonian Lie algebras
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 27 (2025) no. 1, pp. 25-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper the action of the orthogonal Lie algebra $\mathfrak{o}(V)$ on the exterior powers of a space $V$ is considered for $n$-dimensional vector space $V$ over a perfect field $K$ of characteristic two with a given nondegenerate orthogonal. The exterior algebra is identified with the algebra of truncated polynomials in $n$ variables. The exterior powers of $V$ taken as modules over $\mathfrak{o}(V)$ are identified with homogeneous subspaces of non-alternating Hamiltonian Lie algebra $P(n)$ with respect to the Poisson bracket corresponding to an orthonormal basis of the space $V$ of variables. It is proved that the exterior powers of the standard representation for Lie algebra $\mathfrak{o}(V)$ are irreducible and pairwise nonequivalent. With respect to subalgebra $so(V)$, $n= 2l+1$ or $n= 2l$, there exist $l$ pairwise nonequivalent fundamental representations in the spaces $\Lambda^{r}V$, $r= 1, \ldots, l$. All of them admit a nondegenerate invariant orthogonal form, being irreducible when $n= 2l+1$. When $n= 2l$ the representations of $so(V)$ in $\Lambda^{r}V$, $r= 1, \ldots, l-1$ are irreducible and the space $\Lambda^{l}V$ possesses the only non-trivial proper invariant subspace $M$, which is a maximal isotropic subspace with respect to an invariant form. Two exceptional simple Lie subalgebras $P_{1}(6)$, $P_{2}(6)$ of $P(n)$, of dimension $2^{5}-1$ and $2^{6}-1$, correspondingly, containing the submodule $M$, and exising only in the case of $6$ variables, are found.
Keywords: perfect field of characteristic two, non-altenating Hamiltonian Lie algebras, fundamental representations
@article{SVMO_2025_27_1_a1,
     author = {A. V. Kondrat'eva and M. I. Kuznetsov},
     title = {Fundamental representations of orthogonal {Lie} algebra and new simple subalgebras of nonalternating {Hamiltonian} {Lie} algebras},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {25--33},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2025},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2025_27_1_a1/}
}
TY  - JOUR
AU  - A. V. Kondrat'eva
AU  - M. I. Kuznetsov
TI  - Fundamental representations of orthogonal Lie algebra and new simple subalgebras of nonalternating Hamiltonian Lie algebras
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2025
SP  - 25
EP  - 33
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2025_27_1_a1/
LA  - ru
ID  - SVMO_2025_27_1_a1
ER  - 
%0 Journal Article
%A A. V. Kondrat'eva
%A M. I. Kuznetsov
%T Fundamental representations of orthogonal Lie algebra and new simple subalgebras of nonalternating Hamiltonian Lie algebras
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2025
%P 25-33
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2025_27_1_a1/
%G ru
%F SVMO_2025_27_1_a1
A. V. Kondrat'eva; M. I. Kuznetsov. Fundamental representations of orthogonal Lie algebra and new simple subalgebras of nonalternating Hamiltonian Lie algebras. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 27 (2025) no. 1, pp. 25-33. http://geodesic.mathdoc.fr/item/SVMO_2025_27_1_a1/

[1] N. Burbaki, Gruppy i algebry Li. Gl. VII, VIII., Mir, M, 1975, 342 pp. | MR

[2] V. Giiemin, Sh. Shternberg, “Algebraicheskaya model tranzitivnoi differentsialnoi geometrii”, Bull. AMS, 10:1 (1964), 16–47

[3] A. V. Kondrateva, M. I. Kuznetsov, “Filtrovannye deformatsii graduirovannykh nealterniruyuschikh gamiltonovykh algebr Li”, Russian Mathematics (Izv. vuzov. Matem.), 68:9 (2024), 86–90 | DOI | MR

[4] A. V. Kondrateva, M. I. Kuznetsov, “Nealterniruyuschie gamiltonovy formy nad algebroi razdelennykh stepenei v kharakteristike 2”, Russian Mathematics (Izv. vuzov. Matem.), 67:6 (2023), 82–87 | DOI

[5] A. V. Kondrateva, “Non-alternating Hamiltonian Lie algebras of Characteristic Two in three variables”, Lobachevskii Journal of Mathematics, 42:12 (2021), 2841–2853 | DOI | MR

[6] L. Lin, “Non-alternating Hamiltonian algebra $P(n,m)$ of characteristic two”, Communications in Algebra, 21:2 (1993), 399–411 | DOI | MR

[7] A. V. Kondrateva, M. I. Kuznetsov, “K teoreme vlozheniya filtrovannykh deformatsii graduirovannykh nealterniruyuschikh gamiltonovykh algebr Li”, Zhurnal SVMO, 26:4 (2024), 392–403 (In Russ.) | DOI

[8] H. Strade, Simple Lie algebras over fields of positive characteristic. I: Structure theory, de Gruyter Expositions in Math., Berlin, 2004, 540 pp. | DOI | MR

[9] G. Brown, “Families of simple Lie algebras of characteristic two”, Comm. Algebra, 23 (1995), 941–954 | DOI | MR

[10] I. Kaplansky, “Some simple Lie algebras of characteristic 2”, Lecture Notes in Math., 993 (1982), 127–129 | DOI | MR

[11] S. M. Skryabin, “Toral rank one simple Lie algebras of low characteristics”, J. Algebra, 200:2 (1998), 650–700 | DOI | MR

[12] M. Vaughan-Lee, “Simple Lie algebras of low dimension over $GF(2)$”, London Math. Soc. J. Comput. Math., 9 (2006), 174–192 | DOI | MR

[13] B. Eick, “Some new simple Lie algebras in characteristic 2”, J. Symbolic Comput., 45:9 (2010), 943–951 | DOI | MR

[14] B. Eick, T. Moede, “Computing subalgebras and $\mathbb{Z}_{2}$-gradings of simple Lie algebras over finite fields”, Commun. Math., 30:2 (2022), 37–50 | DOI | MR

[15] D. Cushing, G. W. Stagg, D. I. Stewart, “A Prolog assisted search for new simple Lie algebras”, Math. Comp., 93 (2022), 1473–1495 | DOI | MR