Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2025_27_1_a1, author = {A. V. Kondrat'eva and M. I. Kuznetsov}, title = {Fundamental representations of orthogonal {Lie} algebra and new simple subalgebras of nonalternating {Hamiltonian} {Lie} algebras}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {25--33}, publisher = {mathdoc}, volume = {27}, number = {1}, year = {2025}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2025_27_1_a1/} }
TY - JOUR AU - A. V. Kondrat'eva AU - M. I. Kuznetsov TI - Fundamental representations of orthogonal Lie algebra and new simple subalgebras of nonalternating Hamiltonian Lie algebras JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2025 SP - 25 EP - 33 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2025_27_1_a1/ LA - ru ID - SVMO_2025_27_1_a1 ER -
%0 Journal Article %A A. V. Kondrat'eva %A M. I. Kuznetsov %T Fundamental representations of orthogonal Lie algebra and new simple subalgebras of nonalternating Hamiltonian Lie algebras %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2025 %P 25-33 %V 27 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2025_27_1_a1/ %G ru %F SVMO_2025_27_1_a1
A. V. Kondrat'eva; M. I. Kuznetsov. Fundamental representations of orthogonal Lie algebra and new simple subalgebras of nonalternating Hamiltonian Lie algebras. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 27 (2025) no. 1, pp. 25-33. http://geodesic.mathdoc.fr/item/SVMO_2025_27_1_a1/
[1] N. Burbaki, Gruppy i algebry Li. Gl. VII, VIII., Mir, M, 1975, 342 pp. | MR
[2] V. Giiemin, Sh. Shternberg, “Algebraicheskaya model tranzitivnoi differentsialnoi geometrii”, Bull. AMS, 10:1 (1964), 16–47
[3] A. V. Kondrateva, M. I. Kuznetsov, “Filtrovannye deformatsii graduirovannykh nealterniruyuschikh gamiltonovykh algebr Li”, Russian Mathematics (Izv. vuzov. Matem.), 68:9 (2024), 86–90 | DOI | MR
[4] A. V. Kondrateva, M. I. Kuznetsov, “Nealterniruyuschie gamiltonovy formy nad algebroi razdelennykh stepenei v kharakteristike 2”, Russian Mathematics (Izv. vuzov. Matem.), 67:6 (2023), 82–87 | DOI
[5] A. V. Kondrateva, “Non-alternating Hamiltonian Lie algebras of Characteristic Two in three variables”, Lobachevskii Journal of Mathematics, 42:12 (2021), 2841–2853 | DOI | MR
[6] L. Lin, “Non-alternating Hamiltonian algebra $P(n,m)$ of characteristic two”, Communications in Algebra, 21:2 (1993), 399–411 | DOI | MR
[7] A. V. Kondrateva, M. I. Kuznetsov, “K teoreme vlozheniya filtrovannykh deformatsii graduirovannykh nealterniruyuschikh gamiltonovykh algebr Li”, Zhurnal SVMO, 26:4 (2024), 392–403 (In Russ.) | DOI
[8] H. Strade, Simple Lie algebras over fields of positive characteristic. I: Structure theory, de Gruyter Expositions in Math., Berlin, 2004, 540 pp. | DOI | MR
[9] G. Brown, “Families of simple Lie algebras of characteristic two”, Comm. Algebra, 23 (1995), 941–954 | DOI | MR
[10] I. Kaplansky, “Some simple Lie algebras of characteristic 2”, Lecture Notes in Math., 993 (1982), 127–129 | DOI | MR
[11] S. M. Skryabin, “Toral rank one simple Lie algebras of low characteristics”, J. Algebra, 200:2 (1998), 650–700 | DOI | MR
[12] M. Vaughan-Lee, “Simple Lie algebras of low dimension over $GF(2)$”, London Math. Soc. J. Comput. Math., 9 (2006), 174–192 | DOI | MR
[13] B. Eick, “Some new simple Lie algebras in characteristic 2”, J. Symbolic Comput., 45:9 (2010), 943–951 | DOI | MR
[14] B. Eick, T. Moede, “Computing subalgebras and $\mathbb{Z}_{2}$-gradings of simple Lie algebras over finite fields”, Commun. Math., 30:2 (2022), 37–50 | DOI | MR
[15] D. Cushing, G. W. Stagg, D. I. Stewart, “A Prolog assisted search for new simple Lie algebras”, Math. Comp., 93 (2022), 1473–1495 | DOI | MR