Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2025_27_1_a0, author = {O. V. Germider and V. N. Popov}, title = {On the method of solving nonlinear {Fredholm} integral equation of the second kind with piecewise-smooth kernels}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {11--24}, publisher = {mathdoc}, volume = {27}, number = {1}, year = {2025}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2025_27_1_a0/} }
TY - JOUR AU - O. V. Germider AU - V. N. Popov TI - On the method of solving nonlinear Fredholm integral equation of the second kind with piecewise-smooth kernels JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2025 SP - 11 EP - 24 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2025_27_1_a0/ LA - ru ID - SVMO_2025_27_1_a0 ER -
%0 Journal Article %A O. V. Germider %A V. N. Popov %T On the method of solving nonlinear Fredholm integral equation of the second kind with piecewise-smooth kernels %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2025 %P 11-24 %V 27 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2025_27_1_a0/ %G ru %F SVMO_2025_27_1_a0
O. V. Germider; V. N. Popov. On the method of solving nonlinear Fredholm integral equation of the second kind with piecewise-smooth kernels. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 27 (2025) no. 1, pp. 11-24. http://geodesic.mathdoc.fr/item/SVMO_2025_27_1_a0/
[1] A.M. Wazwaz, Linear and Nonlinear Integral Equations: Methods and Applications, Springer-Verlag, Beijing, 2011, 658 pp. | MR
[2] N. Karamollahi, M. Heydari, Gh.B. Loghmani, “Approximate solution of nonlinear Fredholm integral equations of the second kind using a class of Hermite”, Mathematics and Computers in Simulation, 187 (2021), 414–432 | DOI | MR
[3] S. Amiri, M. Hajipour, D. Baleanu, “On accurate solution of the Fredholm integral equations of the second kind”, Applied Numerical Mathematics, 150 (2020), 478-490 | DOI | MR
[4] Y. Ordokhani, M. Razzaghi, “Solution of nonlinear Volterra-Fredholm–Hammerstein integral equations via a collocation method and rationalized Haar functions”, Applied Mathematics Letters, 21 (2008), 4-9 | DOI | MR
[5] S. Islam, I. Aziz, A. Al-Fhaid, “An improved method based on Haar wavelets for numerical solution of nonlinear integral and”, Journal of Computational and Applied Mathematics, 260 (2014), 449-469 | DOI | MR
[6] S. Bazm, A. Hosseini, J.S. Azevedo, F. Pahlevani, “Existence, uniqueness, and numerical approximation of solutions of a nonlinear functional integral”, Journal of Computational and Applied Mathematics, 439 (2024), 115602 | DOI | MR
[7] A.N. Tynda, D.N. Sidorov, I.R. Muftakhov, “Chislennyi metod resheniya sistem nelineinykh integralnykh uravnenii Volterra I roda s razryvnymi yadrami”, Zhurnal Srednevolzhskogo matematicheskogo obschestva, 20:1 (2018), 55-63 | DOI
[8] H.T. Davis, Introduction to Nonlinear Differential and Integral Equations, Dover Publications, New York, 1962, 566 pp. | MR
[9] N.S. Bakhvalov, N.P. Zhidkov, G.M. Kobelkov, Chislennye metody, Laboratoriya znanii, Moskva, 2020, 636 pp. | MR
[10] O.V. Germider, V.N. Popov, “Otsenka konstanty Lebega dlya Chebyshevskogo raspredeleniya uzlov”, Zhurnal Srednevolzhskogo matematicheskogo obschestva, 25:4 (2023), 242-254 | DOI | MR
[11] Bellman R., Kalaba R., Quasilinearization and Nonlinear Boundary Value Problems, Elsevier, New York, 1965, 62 pp. | MR
[12] S. Bazm, P. Limaand, S. Nemati, “Analysis of the Euler and trapezoidal discretization methods for the numerical solution of nonlinear functional Volterra integral equations of Urysohn type”, Journal of Computational and Applied Mathematics, 398 (2021), 113628 | DOI | MR
[13] J. Mason, D. Handscomb, Chebyshev polynomials, Chapman and Hall/CRC, New York, 2002, 360 pp. | DOI | MR
[14] S. Liu, G. Trenkler, “Hadamard, Khatri-Rao, Kronecker and other matrix products”, International Journal of Information and Systems Sciences, 4:1 (2008), 160-177 | MR