Application of equations with deviating argument to mathematical modeling of pressure measurement systems in gas-liquid media
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 26 (2024) no. 4, pp. 442-457.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article discusses a mathematical model of a system for monitoring pressure changes in the combustion chamber of an aircraft engine, whose components are a pipeline and a sensor. The study of the original problem is reduced to solving a linear second-order differential equation with a deviating argument, which allows one to determine the pressure of the working medium in the combustion chamber at each moment of time basing on the deformation magnitude of the sensor's sensitive element. The aim of the work is to construct solutions to this equation and to use them in applied problems of aerohydroelasticity, namely, in studying the dynamics of elastic elements of pressure sensors interacting with gas or liquid. Some exact solutions are given for the equation with a deviating argument. A numerical method for studying this equation based on the Runge-Kutta method is proposed. Calculations are carried out in the Mathematica system; basing on their results graphs of changes in the elastic element deformation over the time are constructed. A numerical-analytical method for solving the equation with a deviating argument using the step method (the method of successive integration) is also considered. The research conducted in the article provides the opportunity to determine the optimal values for the parameters of mechanical pressure measurement systems at the design stage.
Keywords: differential-difference equations, Runge-Kutta method, pressure measurement system, aerohydroelasticity, dynamics
@article{SVMO_2024_26_4_a5,
     author = {P. A. Vel'misov and P. C. Matcenko and Yu. A. Tamarova},
     title = {Application of equations with deviating argument to mathematical modeling of pressure measurement systems in gas-liquid media},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {442--457},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2024_26_4_a5/}
}
TY  - JOUR
AU  - P. A. Vel'misov
AU  - P. C. Matcenko
AU  - Yu. A. Tamarova
TI  - Application of equations with deviating argument to mathematical modeling of pressure measurement systems in gas-liquid media
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2024
SP  - 442
EP  - 457
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2024_26_4_a5/
LA  - ru
ID  - SVMO_2024_26_4_a5
ER  - 
%0 Journal Article
%A P. A. Vel'misov
%A P. C. Matcenko
%A Yu. A. Tamarova
%T Application of equations with deviating argument to mathematical modeling of pressure measurement systems in gas-liquid media
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2024
%P 442-457
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2024_26_4_a5/
%G ru
%F SVMO_2024_26_4_a5
P. A. Vel'misov; P. C. Matcenko; Yu. A. Tamarova. Application of equations with deviating argument to mathematical modeling of pressure measurement systems in gas-liquid media. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 26 (2024) no. 4, pp. 442-457. http://geodesic.mathdoc.fr/item/SVMO_2024_26_4_a5/

[1] R. Bellman, K. L. Kuk, Differentsialno-raznostnye uravneniya, M.: Mir, 1967, 548 pp.

[2] A. D. Myshkis, Lineinye differentsialnye uravneniya s zapazdyvayuschim argumentom, M.: Nauka, 1972, 352 pp. | MR

[3] E. A. Andreeva, V.B. Kolmanovskii, L. E. Shaikhet, Upravlenie sistemami s posledeistviem, M.: Nauka. Gl. red. fiz.-mat. lit., 1992, 336 pp. | MR

[4] V.G. Kurbatov, Lineinye differentsialno-raznostnye uravneniya, Voronezh: Izd-vo Voronezhskogo un-ta, 1990, 168 pp. | MR

[5] S.B. Norkin, Differentsialnye uravneniya vtorogo poryadka s zapazdyvayuschim argumentom, M.: Nauka. Gl. red. fiz.-mat. lit., 1965, 356 pp.

[6] V.B. Kolmanovskii, V.R. Nosov, Ustoichivost i periodicheskie rezhimy reguliruemykh sistem s posledeistviem, M.: Nauka. Gl. red. fiz.-mat. lit., 1981, 448 pp. | MR

[7] Wang Zh., Qian L., Lu S., “On the existence of periodic solutions to a fourth-order p-Laplacian differential equation with a deviating argument”, Nonlinear Analysis: Real World Applications, 11:3 (2010), 1660–1669 | DOI | MR | Zbl

[8] Bica A.M., Curila M., Curila S., “About a numerical method of successive interpolations for two-point boundary value problems with deviating argument”, Applied Mathematics and Computation, 217:19 (2011), 7772–7789 | DOI | MR | Zbl

[9] L.G. Etkin, Vibrochastotnye datchiki. Teoriya i praktika., M.: Izd-vo MGTU im.N.E. Baumana, 2004, 408 pp.

[10] A.A. Kazaryan, G.P. Groshev, “Universalnyi datchik davleniya”, Izmeritelnaya tekhnika, 3 (2008), 26–30

[11] Zh. Ash, P. Andre, Zh. Bofron, Datchiki izmeritelnykh sistem: v 2-kh kn. Kn.2, M.: Mir, 1992, 419 pp.

[12] A.I. Andreev, A.V. Zhukov, A.S. Yakovishin, “Razrabotka metodiki v oblasti proektirovaniya membrannykh datchikov davleniya”, Vestnik PNIPU. Mashinostroenie. Materialovedenie., 24:1 (2022), 28–34 | DOI

[13] M.V. Basov, D.M. Prigodskii, D.A. Kholodkov, “Modelirovanie chuvstvitelnogo elementa datchika davleniya na osnove bipolyarnogo tenzotranzistora”, Datchiki i sistemy., 6 (2017), 17–24

[14] J. Chen, “Flexible Pressure Sensors and Their Applications”, Highlights in Science, Engineering and Technology., 44 (2023), 54–60 | DOI

[15] E. Aulisa, A. Ibragimov, E.Y. Kaya-Cekin, “Fluid structure interaction problem with changing thickness beam and slightly compressible fluid”, Discrete and Continuous Dynamical Systems, Ser. S., 7:6 (2014), 1133–1148 | DOI | MR | Zbl

[16] M. P. Paidoussis, “The Canonical Problem of the Fluid-Conveying Pipe and Radiation of the Knowledge Gained to Other Dynamics Problems across Applied Mechanics”, Journal of Sound and Vibration, 3:3 (2008), 462–492 | DOI | MR

[17] M. Kheiri, M. P. Paidoussis, “Dynamics and stability of a flexible pinned-free cylinder in axial flow”, Journal of Fluids and Structures., 55 (2015), 204–217 | DOI

[18] R.T. Faal, D. Derakhshan, “Flow-induced vibration of pipeline on elastic support”, Procedia Engineering., 14 (2011), 2986–2993 | DOI

[19] P.A.Velmisov, Yu.A.Tamarova, “Matematicheskoe modelirovanie dinamiki aerouprugoi sistemy «truboprovod – datchik davleniya»”, Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Mekhanika., 2 (2024), 69–78 | DOI

[20] P.A.Velmisov, Yu.A.Tamarova, “Matematicheskoe modelirovanie sistem izmereniya davleniya v gazozhidkostnykh sredakh”, Zhurnal Srednevolzhskogo matematicheskogo obschestva, 22:3 (2020), 352–367, Saransk | DOI | Zbl

[21] Yu.A.Tamarova, P.A.Velmisov, N.D. Aleksanin, N.I. Nurullin, “Issledovanie dinamicheskikh protsessov v sistemakh izmereniya davleniya gazozhidkostnykh sred”, Zhurnal Srednevolzhskogo matematicheskogo obschestva, 23:4 (2021), 461–471, Saransk | DOI

[22] P. Velmisov, Y. Tamarova, Y. Pokladova, “Mathematical modeling of pressure monitoring systems in fluid and gaseous media”, AIP Conference Proceedings, 2333:1 (2021), 120004 | DOI

[23] P.A. Velmisov, Y.A. Tamarova, Y.V. Pokladova, “Mathematical modeling of a class of aerohydroelastic systems”, Journal of Mathematical Sciences, 255:5 (2021), 587–594 | DOI | MR | Zbl