Numerical simulation of turbulent flow in a channel with~a~bend
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 26 (2024) no. 4, pp. 424-441.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article presents the results of a numerical study of the turbulent flows’ structure in the construction elements under consideration, for which grid models are constructed that correspond to turbulence modeling approaches. More specifically, these approaches invoke Reynolds Averaged Navier-Stokes equations (RANS), equations closed using one or another semi-empirical turbulence model, as well as vortex–resolving approach, in particular, the method of large vortices modeling (Large Eddy Simulation – LES). The flow calculations were performed both in stationary and non-stationary settings using the LOGOS complex on a parallel supercomputer. From the analysis of the results obtained, it is concluded that the averaged flow parameters found within a non-stationary formulation using a zone RANS-LES transition in the turbulence model qualitatively and quantitatively better coincide with experimental data than the results of stationary calculations based on the use of the RANS approach. Verification of the numerical technique was carried out by experimental data obtained on the FT-18 aerodynamic stand on the basis of Nizhny Novgorod State Technical university named after R.E. Alekseev. A quantitative criterion for the effect of structural changes on the uniformity of the flow is the vorticity level.
Keywords: numerical modeling, gas turbulent flow structure, Navier-Stokes equations, Reynolds averaging, grid models
@article{SVMO_2024_26_4_a4,
     author = {T. Yu. Balabina and Yu. N. Deryugin and E. A. Kudryashov},
     title = {Numerical simulation of turbulent flow in a channel with~a~bend},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {424--441},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2024_26_4_a4/}
}
TY  - JOUR
AU  - T. Yu. Balabina
AU  - Yu. N. Deryugin
AU  - E. A. Kudryashov
TI  - Numerical simulation of turbulent flow in a channel with~a~bend
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2024
SP  - 424
EP  - 441
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2024_26_4_a4/
LA  - ru
ID  - SVMO_2024_26_4_a4
ER  - 
%0 Journal Article
%A T. Yu. Balabina
%A Yu. N. Deryugin
%A E. A. Kudryashov
%T Numerical simulation of turbulent flow in a channel with~a~bend
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2024
%P 424-441
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2024_26_4_a4/
%G ru
%F SVMO_2024_26_4_a4
T. Yu. Balabina; Yu. N. Deryugin; E. A. Kudryashov. Numerical simulation of turbulent flow in a channel with~a~bend. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 26 (2024) no. 4, pp. 424-441. http://geodesic.mathdoc.fr/item/SVMO_2024_26_4_a4/

[1] V. V. Kharitonov, Teplofizika lazernykh zerkal: Uchebnoe posobie., MIFI, M, 1993, 152 pp. (In Russ.)

[2] G. Shlikhting, Teoriya pogranichnogo sloya., NAUKA, M., 1974, 712 pp. (In Russ.)

[3] I. E. Idelchik, Spravochnik po gidravlicheskim soprotivleniyam., Mashinostroenie, M, 1992., 672 pp. (In Russ.)

[4] G. Xiaofeng, T. B. Martonen, “Simulations of flow in curved tubes”, Aerosol Sci. Technology, 26:6 (1997), 485–504 | DOI

[5] Yu. A Bystrov., S. A. Isaev, N. A. Kudryavtsev, A. I. Leontev, Chislennoe modelirovanie vikhrevoi intensifikatsii teploobmena v pakete trub, Sudostroenie, SPb., 2005, 392 pp. (In Russ.)

[6] A. V. Garbaruk, M. Kh. Strelets, A. K. Travin, M. L. Shur, Sovremennye podkhody k modelirovaniyu turbulentnosti: Uchebnoe posobie, Izd-vo Politekhn. un-ta, SPb., 2016, 233 pp. (In Russ.)

[7] K. N. Volkov, V. N. Emelyanov, Modelirovanie krupnykh vikhrei v raschetakh turbulentnykh techenii, FIZMATLIT, M, 2008, 368 pp. (In Russ.)

[8] F. R. Menter, Zonal two-equation $k-\omega$ turbulence models for aerodynamic flows, AIAA-Paper, Florida: Orlando, 1993, 22 pp.

[9] A. S.Kozelkov, Yu N. Deryugin, D. K. Zelenskii, S. N. Polischuk, S. V. Lashkin, R. N. Zhuchkov, V. A. Glazunov, S. V. Yatsevich, V. V. Kurulin, Mnogofunktsionalnyi paket programm LOGOS: fiziko-matematicheskie modeli rascheta zadach aero-, gidrodinamiki i teplomassoperenosa., RFYaTs-VNIIEF, Sarov, 2013, 67 pp. (In Russ.)

[10] Yu. I. Anoshkin, A. A. Dobrov, M. M. Kuzma, I. V. Mineev, M. M. Mulin, M. A. Subarev, “Development and validation of experimental stand ft-18 to study processes of mixing in models of different geometry”, Transactions of NNSTU n.a. R.E. Alekseev, 2019, no. 2, 94–104 (In Russ.)

[11] D. N. Smolkina, O. N. Borisenko, M. V. Cherenkova, A. G. Giniyatullina, M. V. Kuz’menko, N. V. Chukhmanov, E. V. Potekhina, N. V. Popova, M. R. Turusov, “An automatic generator of unstructured polyhedral grids in the LOGOS software preprocessor”, Problems of atomic Science and Technology. Ser. Mathematical modeling of physical processes, 2018, no. 2, 25–39 (In Russ.)

[12] A. Smirnov, S. Shi, I. Celik, “Random flow generation technique for large eddy simulations and particle-dynamics modeling”, J. Fluids Eng, 2001, no. 123(2), 359–371 | DOI

[13] D. Y. Adamian, M. Kh. Strelets, A. K. Travin, “An efficient method of synthetic turbulence generation at les inflow in zonal rans-les approaches to computation of turbulent flows”, Mat. Modeling, 2011, no. 23(7), 3–19 (In Russ.) | Zbl

[14] J. H. Ferziger, M. Peric, Computational methods for fluid dynamics, Springer, 2002, 423 pp. | MR | Zbl

[15] R. I. Issa, “Solution of the implicitly discretised fluid flow equations by operator-splitting”, Journal of Computational Physics, 1986, no. 62(1), 40–65 | DOI | MR | Zbl

[16] K. N. Volkov, V. I. Zapryagaev, V. N. Yemelyanov, N. P. Kiseleva, I. V. Teterina, D. A. Gubanov, I. N. Kavun, Visualization of physical and mathematical modeling data in gas dynamics, Fizmatlit, Moscow, 2017, 338 pp. (In Russ.)