Development of a parameterization method for solving optimal control problems and development of a software package concept
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 26 (2024) no. 3, pp. 260-279.

Voir la notice de l'article provenant de la source Math-Net.Ru

An analysis of existing approaches to the development of software solutions designed to solve optimal control problems is carried out, and a conclusion is drawn about the need to develop specialized numerical software systems. As a numerical method for solving optimal control problems, a parameterization method is proposed, which allows, on the basis of a unified approach, to solve optimal control problems with point or distributed delay and without delay as well. The method describes a scheme for representing a control action in the form of a generalized spline with moving nodes and subsequent reduction of the original optimal control problem with or without delay to a nonlinear programming problem with respect to the spline parameters and temporary nodes. For stated nonlinear programming problem, algorithms for calculating the first and second order derivatives of the objective function are presented. These algorithms make it possible to calculate derivatives based on solving Cauchy problems for direct and adjoint systems. This approach differs from the standard method of calculation based on difference approximation and can significantly reduce the overall amount of calculations. Based on the specifics of the parameterization method, a concept for developing a software package is proposed, and the main provisions of the development are derived. Thus, the software package offers independence in the implementation of methods for solving nonlinear programming problems and discrete schemes for solving Cauchy problems. It also offers a unified (independent of the type of optimal control problem) approach to control parameterization. The results of computational experiments carried out using the parameterization method are also presented. These results confirm the effectiveness of using a unified approach while solving of optimal control problems with point delay, distributed delay, and with no delay.
Keywords: optimal control, delay, parameterization method, nonlinear programming, software package
@article{SVMO_2024_26_3_a2,
     author = {I. V. Lutoshkin and A. G. Chekmarev},
     title = {Development of a parameterization method for solving optimal control problems and development of a software package concept},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {260--279},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2024_26_3_a2/}
}
TY  - JOUR
AU  - I. V. Lutoshkin
AU  - A. G. Chekmarev
TI  - Development of a parameterization method for solving optimal control problems and development of a software package concept
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2024
SP  - 260
EP  - 279
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2024_26_3_a2/
LA  - ru
ID  - SVMO_2024_26_3_a2
ER  - 
%0 Journal Article
%A I. V. Lutoshkin
%A A. G. Chekmarev
%T Development of a parameterization method for solving optimal control problems and development of a software package concept
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2024
%P 260-279
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2024_26_3_a2/
%G ru
%F SVMO_2024_26_3_a2
I. V. Lutoshkin; A. G. Chekmarev. Development of a parameterization method for solving optimal control problems and development of a software package concept. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 26 (2024) no. 3, pp. 260-279. http://geodesic.mathdoc.fr/item/SVMO_2024_26_3_a2/

[1] S. A. Fedoseev, D. L. Gorbunov, “Algoritm optimalnogo upravleniya zamknutoi sistemoi rynka truda na zadannom vremennom intervale”, Vestnik YuUrGU. Seriya «Kompyuternye tekhnologii, upravlenie, radioelektronika», 24:1 (2024), 96–105 | DOI

[2] O. N. Korsun, A. V. Stulovskii, “Pryamoi metod formirovaniya optimalnogo programmnogo upravleniya letatelnym apparatom”, Izvestiya RAN. Teoriya i sistemy upravleniya, 58:2 (2019), 75–89 | DOI | MR | Zbl

[3] I. V. Lutoshkin, M. S. Rybina, “Optimal solution in the model of control over an economic system in the condition of a mass disease”, Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya: Matematika. Mekhanika. Informatika, 23:2 (2023), 264–273 | DOI | MR

[4] P. Eichmeir, K. Nachbagauer, T. Lauf, K. Sherif, W. Steiner, “Time-Optimal Control of Dynamic Systems Regarding Final Constraints”, Journal of Computational and Nonlinear Dynamics, 16:3 (2021), 12 pp. | DOI

[5] F. Biral, E. Bertolazzi, P. Bosetti, “Notes on numerical methods for solving optimal control problems”, IEEJ Journal of Industry Applications. J-STAGE, 5:2 (2016), 154–166 | DOI

[6] A. Yu. Gornov, “Klassifikatsiya problem, voznikayuschikh pri chislennom reshenii zadach optimalnogo upravleniya”, Vychislitelnye tekhnologii., 13:S1 (2008), 17–26

[7] H. S. Rodrigues, M. T. T. Monteiro, D. F. M. Torres, “Optimal Control and Numerical Software: An Overview”, Syst. Theory Perspect. Appl. Dev., 2014, 93–110 | MR

[8] S. Ozana, T. Docekal, J. Nemcik, F. Krupa, J. Mozaryn, “A Comparative Survey Of Software Computational Tools In The Field Of Optimal Control”, 23rd International Conference on Process Control (PC), 2021 | DOI

[9] A. V. Rao, “Trajectory optimization: a survey”, Optimization and optimal control in automotive systems. Cham. Springer, 2014, 3–21 | DOI | MR | Zbl

[10] P. S. Sorokovikov, A. Yu. Gornov, “Paket programm MEOPT dlya resheniya nevypuklykh zadach parametricheskoi identifikatsii”, Informatsionnye i matematicheskie tekhnologii v nauke i upravlenii, 2022, no. 2, 53–60 | DOI

[11] V. K. Gorbunov, “Metod parametrizatsii zadach optimalnogo upravleniya”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 19:2 (1979), 292–303 | MR | Zbl

[12] I. V. Lutoshkin, “Optimizatsiya nelineinykh sistem s integro-differentsialnymi svyazyami metodom parametrizatsii”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Ser. «Matematika», 4:1 (2011), 44–56 | MR | Zbl

[13] V. K. Gorbunov,I. V. Lutoshkin, “Razvitie i opyt primeneniya metoda parametrizatsii v vyrozhdennykh zadachakh dinamicheskoi optimizatsii”, Izvestiya RAN. Ser. Teoriya i sistemy upravleniya, 2004, no. 5, 67–84

[14] I. V. Lutoshkin, Dinamicheskie modeli ekonomicheskikh sistem i metody ikh analiza, Ulyanovsk : UlGU, 2024, 188 pp.

[15] V. G. Antonik,V. A. Srochko, “Metod proektsii v lineino-kvadratichnykh zadachakh optimalnogo upravleniya”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 38:4 (1998), 564–572 | MR | Zbl