Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2024_26_3_a1, author = {V. L. Leontev}, title = {Convergence of {Fourier} method connected with orthogonal splines}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {245--259}, publisher = {mathdoc}, volume = {26}, number = {3}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2024_26_3_a1/} }
V. L. Leontev. Convergence of Fourier method connected with orthogonal splines. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 26 (2024) no. 3, pp. 245-259. http://geodesic.mathdoc.fr/item/SVMO_2024_26_3_a1/
[1] V. L. Leontiev, “Fourier method related with orthogonal splines in parabolic initial boundary value problem for domain with curvilinear boundary”, Ufa Mathematical Journal, 14:2 (2022), 56–66 | DOI | MR | Zbl
[2] E. A. Gasymov, A. O. Guseinova, U. N. Gasanova, “Application of generalized separation of variables to solving mixed problems with irregular boundary conditions”, Computational Mathematics and Mathematical Physics, 56:7 (2016), 1305–1309 | DOI | MR | Zbl
[3] I. A. Savichev, A. D. Chernyshov, “Application of the angular superposition method to the contact problem on the compression of an elastic cylinder”, Mechanics of Solids, 44:3 (2009), 463–472 | DOI
[4] Yu. I. Malov, L. K. Martinson, K. B.Pavlov, “Solution by separation of the variables of some mixed boundary value problems in the hydrodynamics of conducting media”, USSR Computational Mathematics and Mathematical Physics, 12:3 (1972), 71–86 | DOI | MR
[5] M. Sh.Israilov, “Diffraction of Acoustic and Elastic Waves on a Half-Plane for Boundary Conditions of Various Types”, Mechanics of Solids, 48:3 (2013), 337–347 | DOI
[6] A. Y. Majeed, L. G. Juan, O. M. Pshtiwan, N. Chorfi, D. Baleanu, “A computational study of time-fractional gas dynamics models by means of conformable finite difference method”, AIMS Mathematics, 9:7 (2024), 19843–19858 | DOI | MR
[7] R. J. LeVeque, Finite difference methods for ordinary and partial differential equations: steady-state and time-dependent problems, Society for Industrial and Applied Mathematics, 2007, 356 pp. | MR | Zbl
[8] Finite Difference Methods. Theory and Applications. 7th International Conference, Lozenetz, Bulgaria, 2018, 701 pp. | DOI
[9] D. Kh. Ivanov, P. N. Vabishchevich, “Iterative Process for Numerical Recovering the Lowest Order Space-Wise Coefficient in Parabolic Equations”, Finite Difference Methods. Theory and Applications. 7th International Conference, Lozenetz, Bulgaria, 2018, 289–296 | DOI | MR
[10] G. Strang, G. J. Fix, An Analysis of the Finite Element Method, Englewood Cliffs, 1973, 349 pp. | MR | Zbl
[11] P. Li, “A Fourier series model and parametric study for single person three-way continuous walking load”, Transactions on Computer Science and Intelligent Systems Research, 4 (2024) | DOI
[12] H. N. Amadi, K. O. Uwho, D. M. Kornom, “Modelling of Electrical Cable Parameters and Fault Detection using Fourier Series”, Journal of Recent Trends in Electrical Power System, 7:2 (2024), 44–56 | DOI
[13] G. F. Voronin, S. A. Degtyarev, “Spline-approximation of thermodynamic properties of solutions”, Computer Coupling of Phase Diagrams and Thermochemistry, 6:3 (1982), 217–227 | DOI
[14] V. L. Leontiev, “Orthogonal Splines in Approximation of Functions”, Mathematics and Statistics, 8:2 (2020), 167–172 | DOI | MR
[15] V. L. Leontiev, Orthogonal splines and special functions in methods of computational mechanics and mathematics, POLITEKH-PRESS, St. Petersburg, 2021, 466 pp. (In Russ.)
[16] E. A. Volkov, Numerical Methods, Hemisphere Publishing Corp., New York, 1990, 238 pp. | MR
[17] S. K. Godunov, V. S.Ryabenkii, Difference Schemes. An Introduction to the Underlying Theory, Elsevier Science Publishers B.V., 1987., 489 pp. | DOI | MR