Hydrodynamic mechanism for dynamical structure formation of a system of rotating particles
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 26 (2024) no. 2, pp. 175-194.

Voir la notice de l'article provenant de la source Math-Net.Ru

Based on the hydrodynamic mechanism, which takes into account the interaction of all particles, a numerical simulation of the formation of a dynamical structure in a viscous fluid was carried out. This structure is a result of the collective dynamics of rotating particles in the fluid. It is supposed that the particles have a magnetic moment and are driven into rotation by an external variable uniform magnetic field. The results of numerical modeling of collective dynamics are presented for three initial structures that can be formed by interacting dipole particles in the absence of an external magnetic field. Such equilibrium structures are a straight chain, a closed chain, and a periodic structure in the form of a flat system of particle chains. The rotation of particles sets the surrounding fluid in motion, whose flow creates hydrodynamic forces and moments that move the particles. The collective dynamics of a system of rotating particles leads to the formation of a new dynamical structure from the original one, and this new structure has its own characteristic features for each case considered. A qualitative comparison of the results of the dynamics for a particles’ system set in motion due to the action of an external moment or an external force is carried out. The proposed hydrodynamic mechanism for the formation of a dynamical structure as a result of the collective dynamics of a rotating particles’ system can be used to control structure formation in a liquid-particle system.
Keywords: collective dynamics, dynamical structure, numerical modeling, rotating particles.
Mots-clés : viscous fluid, hydrodynamic interaction
@article{SVMO_2024_26_2_a4,
     author = {S. I. Martynov and L. Yu. Tkach},
     title = {Hydrodynamic mechanism for  dynamical structure formation of a system of rotating particles},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {175--194},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2024_26_2_a4/}
}
TY  - JOUR
AU  - S. I. Martynov
AU  - L. Yu. Tkach
TI  - Hydrodynamic mechanism for  dynamical structure formation of a system of rotating particles
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2024
SP  - 175
EP  - 194
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2024_26_2_a4/
LA  - ru
ID  - SVMO_2024_26_2_a4
ER  - 
%0 Journal Article
%A S. I. Martynov
%A L. Yu. Tkach
%T Hydrodynamic mechanism for  dynamical structure formation of a system of rotating particles
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2024
%P 175-194
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2024_26_2_a4/
%G ru
%F SVMO_2024_26_2_a4
S. I. Martynov; L. Yu. Tkach. Hydrodynamic mechanism for  dynamical structure formation of a system of rotating particles. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 26 (2024) no. 2, pp. 175-194. http://geodesic.mathdoc.fr/item/SVMO_2024_26_2_a4/

[1] Arigaa K., Nishikawa M., Mori T., Takey J., Shrestha L. K., Hill J. P, “Self-assembly as a key player for materials nanoarchitectonics”, Science and Technology of Advanced Materials., 20:1 (2019), 51-95 | DOI

[2] Shields C.W., Velev D., “The Evolution of Active Particles: Toward Externally Powered Self-Propelling and Self-Reconfiguring Particle Systems”, Chem., 2017, no. 4, 539-559 | DOI

[3] Robertson B., Stark H., Kapral R., “Collective orientational dynamics of pinned chemically-propelled nanorotors”, CHAOS, 2018, no. 28, 045109 | DOI

[4] Aubret A., Youssef M., Sacanna S., Palacci J., “Targeted assembly and synchronization of self-spinning microgears”, Nature Physics, 14 (2018), 1114-1118 | DOI

[5] Wang W., Duan W., Ahmed S., Sen A., Mallouk T.E., “From one to many: Dynamic assembly and collective behavior of self-propelled colloidal motors”, Acc. Chem. Res., 48 (2015), 1938-1946 | DOI

[6] Wang Q., Yang L., Wang B., Yu E., Yu J., Zhang L., “Collective Behavior of Reconfigurable Magnetic Droplets via Dynamic Self-Assembly”, ACS Appl. Mater. Interfaces, 11:1 (2019), 1630-1637 | DOI

[7] Kokot G., Kolmakov G. V., Aranson I. S., Snezhko A., “Dynamic self-assembly and self-organized transport of magnetic micro-swimmers”, Scientific Reports, 7 (2017), 14726 | DOI

[8] Snezhko A., “Complex collective dynamics of active torque-driven colloids at interfaces”, Current Opinion in Colloid and Interface Science, 2016, no. 21, 65-75 | DOI

[9] Liljeström V., Chen C., Dommersnes P., Fossum J. O., Gröschel A.H., “Active structuring of colloids through field-driven self-assembly”, Current Opinion in Colloid and Interface Science, 40 (2019.), 25-41 | DOI

[10] Aranson I.S., “Aktivnye kolloidy”, Uspekhi fizicheskikh nauk, 183:1 (2013.), 87-102 | DOI

[11] Manikas K., Vogiatzis G. G., Hütter M., Anderson P. D., “Structure formation in suspensions under uniform electric or magnetic field”, Multiscale and Multidisciplinary Modeling, Experiments and Design, 4 (2021), 77-97 | DOI

[12] Koessel F. R., Jabbari-Farouji S., “Emergent pattern formation of active magnetic suspensions in an external field”, New J. Phys., 22 (2020), 103007 | DOI | MR

[13] Ma Z., Yang M., Ni R., “Dynamic Assembly of Active Colloids: Theory and Simulation”, Adv. Theory Simul, 3 (2020), 2000021 | DOI

[14] Telezki V., Klumpp S., “Simulations of structure formation by confined dipolar active particles”, Soft Matter, 16 (2020), 10537 | DOI

[15] Miyamoto T., Imai M., Uchida N., “Hydrodynamic synchronization and collective dynamics of colloidal particles driven along a circular path”, Phys. Rev. E, 100:3 (2019), 032607 | DOI

[16] Driscoll M., Delmotte B., “Leveraging collective effects in externally driven colloidal suspensions: experiments and simulations”, Current Opinion in Colloid and Interface Science, 40 (2019), 42-57 | DOI

[17] Martynov S. I., Tkach L.Yu., “O mekhanizme peremescheniya agregatov chastits v vyazkoi zhidkosti v peremennom odnorodnom vneshnem pole”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 5:3 (2019), 505-515 | DOI | MR

[18] S. I. Martynov, “Gidrodinamicheskoe vzaimodeistvie chastits”, Izv. RAN. Mekhanika zhidkosti i gaza, 1998, no. 2, 112–119 | Zbl

[19] Baranov V. E., Martynov S. I., “Vliyanie gidrodinamicheskogo vzaimodeistviya na skorost osazhdeniya bolshogo chisla chastits v vyazkoi zhidkosti”, Izvestiya RAN. Mekhanika zhidkosti i gaza., 2004., no. 1, 152-164. | Zbl

[20] Martynov S.I., Tkach L.Yu., “Modelirovanie dinamiki agregatov chastits v vyazkoi zhidkosti”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 55:2 (2015), 285-294 | DOI | Zbl

[21] Landau L. D. , Lifshits E. M., Elektrodinamika sploshnykh sred, Nauka, M., 1982, 620 pp. | MR

[22] Batygin V. V.,Toptygin I. N., Sbornik zadacha po elektrodinamike, Nauka, M., 1970, 488 pp. | MR

[23] Landecker P.B., Villani D.D., Yung K.W., “An analytic solution for the torque between two magnetic dipoles”, Magnetic and Electrical Separation, 10 (1998), 29-33 | DOI

[24] Shutyi A.M., “Ravnovesnye znacheniya i dinamika summarnogo magnitnogo momenta sistem magnitnykh dipolei”, ZhETF, 137:2 (2010), 277-286