Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2024_26_2_a4, author = {S. I. Martynov and L. Yu. Tkach}, title = {Hydrodynamic mechanism for dynamical structure formation of a system of rotating particles}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {175--194}, publisher = {mathdoc}, volume = {26}, number = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2024_26_2_a4/} }
TY - JOUR AU - S. I. Martynov AU - L. Yu. Tkach TI - Hydrodynamic mechanism for dynamical structure formation of a system of rotating particles JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2024 SP - 175 EP - 194 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2024_26_2_a4/ LA - ru ID - SVMO_2024_26_2_a4 ER -
%0 Journal Article %A S. I. Martynov %A L. Yu. Tkach %T Hydrodynamic mechanism for dynamical structure formation of a system of rotating particles %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2024 %P 175-194 %V 26 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2024_26_2_a4/ %G ru %F SVMO_2024_26_2_a4
S. I. Martynov; L. Yu. Tkach. Hydrodynamic mechanism for dynamical structure formation of a system of rotating particles. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 26 (2024) no. 2, pp. 175-194. http://geodesic.mathdoc.fr/item/SVMO_2024_26_2_a4/
[1] Arigaa K., Nishikawa M., Mori T., Takey J., Shrestha L. K., Hill J. P, “Self-assembly as a key player for materials nanoarchitectonics”, Science and Technology of Advanced Materials., 20:1 (2019), 51-95 | DOI
[2] Shields C.W., Velev D., “The Evolution of Active Particles: Toward Externally Powered Self-Propelling and Self-Reconfiguring Particle Systems”, Chem., 2017, no. 4, 539-559 | DOI
[3] Robertson B., Stark H., Kapral R., “Collective orientational dynamics of pinned chemically-propelled nanorotors”, CHAOS, 2018, no. 28, 045109 | DOI
[4] Aubret A., Youssef M., Sacanna S., Palacci J., “Targeted assembly and synchronization of self-spinning microgears”, Nature Physics, 14 (2018), 1114-1118 | DOI
[5] Wang W., Duan W., Ahmed S., Sen A., Mallouk T.E., “From one to many: Dynamic assembly and collective behavior of self-propelled colloidal motors”, Acc. Chem. Res., 48 (2015), 1938-1946 | DOI
[6] Wang Q., Yang L., Wang B., Yu E., Yu J., Zhang L., “Collective Behavior of Reconfigurable Magnetic Droplets via Dynamic Self-Assembly”, ACS Appl. Mater. Interfaces, 11:1 (2019), 1630-1637 | DOI
[7] Kokot G., Kolmakov G. V., Aranson I. S., Snezhko A., “Dynamic self-assembly and self-organized transport of magnetic micro-swimmers”, Scientific Reports, 7 (2017), 14726 | DOI
[8] Snezhko A., “Complex collective dynamics of active torque-driven colloids at interfaces”, Current Opinion in Colloid and Interface Science, 2016, no. 21, 65-75 | DOI
[9] Liljeström V., Chen C., Dommersnes P., Fossum J. O., Gröschel A.H., “Active structuring of colloids through field-driven self-assembly”, Current Opinion in Colloid and Interface Science, 40 (2019.), 25-41 | DOI
[10] Aranson I.S., “Aktivnye kolloidy”, Uspekhi fizicheskikh nauk, 183:1 (2013.), 87-102 | DOI
[11] Manikas K., Vogiatzis G. G., Hütter M., Anderson P. D., “Structure formation in suspensions under uniform electric or magnetic field”, Multiscale and Multidisciplinary Modeling, Experiments and Design, 4 (2021), 77-97 | DOI
[12] Koessel F. R., Jabbari-Farouji S., “Emergent pattern formation of active magnetic suspensions in an external field”, New J. Phys., 22 (2020), 103007 | DOI | MR
[13] Ma Z., Yang M., Ni R., “Dynamic Assembly of Active Colloids: Theory and Simulation”, Adv. Theory Simul, 3 (2020), 2000021 | DOI
[14] Telezki V., Klumpp S., “Simulations of structure formation by confined dipolar active particles”, Soft Matter, 16 (2020), 10537 | DOI
[15] Miyamoto T., Imai M., Uchida N., “Hydrodynamic synchronization and collective dynamics of colloidal particles driven along a circular path”, Phys. Rev. E, 100:3 (2019), 032607 | DOI
[16] Driscoll M., Delmotte B., “Leveraging collective effects in externally driven colloidal suspensions: experiments and simulations”, Current Opinion in Colloid and Interface Science, 40 (2019), 42-57 | DOI
[17] Martynov S. I., Tkach L.Yu., “O mekhanizme peremescheniya agregatov chastits v vyazkoi zhidkosti v peremennom odnorodnom vneshnem pole”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 5:3 (2019), 505-515 | DOI | MR
[18] S. I. Martynov, “Gidrodinamicheskoe vzaimodeistvie chastits”, Izv. RAN. Mekhanika zhidkosti i gaza, 1998, no. 2, 112–119 | Zbl
[19] Baranov V. E., Martynov S. I., “Vliyanie gidrodinamicheskogo vzaimodeistviya na skorost osazhdeniya bolshogo chisla chastits v vyazkoi zhidkosti”, Izvestiya RAN. Mekhanika zhidkosti i gaza., 2004., no. 1, 152-164. | Zbl
[20] Martynov S.I., Tkach L.Yu., “Modelirovanie dinamiki agregatov chastits v vyazkoi zhidkosti”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 55:2 (2015), 285-294 | DOI | Zbl
[21] Landau L. D. , Lifshits E. M., Elektrodinamika sploshnykh sred, Nauka, M., 1982, 620 pp. | MR
[22] Batygin V. V.,Toptygin I. N., Sbornik zadacha po elektrodinamike, Nauka, M., 1970, 488 pp. | MR
[23] Landecker P.B., Villani D.D., Yung K.W., “An analytic solution for the torque between two magnetic dipoles”, Magnetic and Electrical Separation, 10 (1998), 29-33 | DOI
[24] Shutyi A.M., “Ravnovesnye znacheniya i dinamika summarnogo magnitnogo momenta sistem magnitnykh dipolei”, ZhETF, 137:2 (2010), 277-286