Continuum Model of Peridynamics for Brittle Fracture Problems
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 26 (2024) no. 2, pp. 157-174

Voir la notice de l'article provenant de la source Math-Net.Ru

The article investigates the nonlocal method of peridynamics, which makes it possible to simulate the brittle fracture of a solid body without using spatial derivatives. The basic motion equation of a particle with a given volume is written in integral form. A model combining the key features of continuum mechanics and of the nonlocal method is considered. To determine the forces of pair interaction, the dependence of the Cauchy stress tensor on the rate-of strain tensor was used. This formulation correctly describes the behavior of the material during damage and allows to get rid of the limitations inherent to simple bond-based model and ordinary state-based model. The maximum value of the tensile stress is used as a criterion of fracture, which describes the process of nucleation and evolution of damage. To test the implemented model, tasks in a two-dimensional formulation were used. Using the example of the elastic problem about uniaxial tension of a thin rod, the convergence of the numerical solution is shown with a decrease of interaction horizon and an increase of particles number. The second task demonstrates the capabilities of the implemented model to describe the nucleation and evolution of a crack under uniaxial load on a plate with an initial horizontal defect.
Keywords: peridynamic, interaction horizon, bond
Mots-clés : nonlocal interactions, fracture criterion, strain gradient tensor
@article{SVMO_2024_26_2_a3,
     author = {Yu. N. Deryugin and D. A. Shishkanov},
     title = {Continuum {Model} of {Peridynamics} for {Brittle} {Fracture} {Problems}},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {157--174},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2024_26_2_a3/}
}
TY  - JOUR
AU  - Yu. N. Deryugin
AU  - D. A. Shishkanov
TI  - Continuum Model of Peridynamics for Brittle Fracture Problems
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2024
SP  - 157
EP  - 174
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2024_26_2_a3/
LA  - ru
ID  - SVMO_2024_26_2_a3
ER  - 
%0 Journal Article
%A Yu. N. Deryugin
%A D. A. Shishkanov
%T Continuum Model of Peridynamics for Brittle Fracture Problems
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2024
%P 157-174
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2024_26_2_a3/
%G ru
%F SVMO_2024_26_2_a3
Yu. N. Deryugin; D. A. Shishkanov. Continuum Model of Peridynamics for Brittle Fracture Problems. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 26 (2024) no. 2, pp. 157-174. http://geodesic.mathdoc.fr/item/SVMO_2024_26_2_a3/