Continuum Model of Peridynamics for Brittle Fracture Problems
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 26 (2024) no. 2, pp. 157-174.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article investigates the nonlocal method of peridynamics, which makes it possible to simulate the brittle fracture of a solid body without using spatial derivatives. The basic motion equation of a particle with a given volume is written in integral form. A model combining the key features of continuum mechanics and of the nonlocal method is considered. To determine the forces of pair interaction, the dependence of the Cauchy stress tensor on the rate-of strain tensor was used. This formulation correctly describes the behavior of the material during damage and allows to get rid of the limitations inherent to simple bond-based model and ordinary state-based model. The maximum value of the tensile stress is used as a criterion of fracture, which describes the process of nucleation and evolution of damage. To test the implemented model, tasks in a two-dimensional formulation were used. Using the example of the elastic problem about uniaxial tension of a thin rod, the convergence of the numerical solution is shown with a decrease of interaction horizon and an increase of particles number. The second task demonstrates the capabilities of the implemented model to describe the nucleation and evolution of a crack under uniaxial load on a plate with an initial horizontal defect.
Keywords: peridynamic, interaction horizon, bond
Mots-clés : nonlocal interactions, fracture criterion, strain gradient tensor
@article{SVMO_2024_26_2_a3,
     author = {Yu. N. Deryugin and D. A. Shishkanov},
     title = {Continuum {Model} of {Peridynamics} for {Brittle} {Fracture} {Problems}},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {157--174},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2024_26_2_a3/}
}
TY  - JOUR
AU  - Yu. N. Deryugin
AU  - D. A. Shishkanov
TI  - Continuum Model of Peridynamics for Brittle Fracture Problems
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2024
SP  - 157
EP  - 174
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2024_26_2_a3/
LA  - ru
ID  - SVMO_2024_26_2_a3
ER  - 
%0 Journal Article
%A Yu. N. Deryugin
%A D. A. Shishkanov
%T Continuum Model of Peridynamics for Brittle Fracture Problems
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2024
%P 157-174
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2024_26_2_a3/
%G ru
%F SVMO_2024_26_2_a3
Yu. N. Deryugin; D. A. Shishkanov. Continuum Model of Peridynamics for Brittle Fracture Problems. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 26 (2024) no. 2, pp. 157-174. http://geodesic.mathdoc.fr/item/SVMO_2024_26_2_a3/

[1] D. A. Shishkanov, M. V. Vetchinnikov, Yu. N. Deryugin, “Peridynamics method for problems solve of solids destruction”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 17:4 (2022), 1–17 (In Russ.) | DOI

[2] Yu. N. Deryugin, M. V. Vetchinnikov, D. A. Shishkanov, “Investigation of different influence functions in peridynamics”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 19:4 (2023), 1–19 (In Russ.) | DOI

[3] S. A. Silling, “Reformulation of elasticity theory for discontinuities and long-range forces”, Journal of Mechanics and Physics of Solids, 2000, 34 pp. | DOI | MR

[4] S. A. Silling, M. Epton, O. Weckner, J. Xu, E. Askari, Peridynamic states and constitutive modeling, University of Nebraska, Lincoln, 2007, 34 pp. | MR

[5] S. A. Silling, R. B. Lehoucq, “Convergence of Peridynamics to Classical Elasticity Theory”, Sandia National Laboratories, 2007, 25 pp. | DOI | MR | Zbl

[6] S. A. Silling, E. Askari, “A meshfree method based on the peridynamic model of solid mechanics”, Computers Structures, 2005, 9 pp. | DOI | Zbl

[7] X. Zhou, Y. Wang, Q. Qian, “Numerical simulation of crack curving and branching in brittle materials under dynamic loads using the extended non-ordinary state-based peridynamics”, European Journal of Mechanics A/Solids, 23 (2016), 277–299 | DOI | MR

[8] W. Liu, Discretized bond-based peridynamics for solid mechanics, Michigan State University, Michigan, 2012, 193 pp. | DOI | MR

[9] S. A. Silling, “Linearized theory of peridynamic states”, Sandia National Laboratories, 27 (2010), 85–111 | MR

[10] F. Bobaru, P. H. Geubelle, J. T. Foster, S. A. Silling, Handbook of Peridynamic Modeling, New York, CRC Press by Taylor Francis Group, LLC, 2017, 586 pp. | DOI | MR

[11] E. Madenci, E. Oterkus, Peridynamic theory and its applications, Springer, New York, 2014, 284 pp. | DOI | Zbl

[12] M. Tupek, J. Rimoli, R. Radovitzky, “An approach for incorporating classical continuum damage models in state-based peridynamics”, Comput. Methods Appl. Mech. Energ., 7 (2013), 20–26 | DOI | MR

[13] X. Gu, Q. Zhang, Y. Yu, “An effective way to control numerical instability of a nonordinary state-based peridynamic elastic model”, Department of Engineering Mechanics, 2017, 8 pp. | DOI | MR

[14] X. Kan, J. Yan, S. Li, A. Zhang, “On differences and comparisons of peridynamic differential operators and nonlocal differential operators”, Computational Mechanics, 2021, 19 pp. | MR

[15] K. Ravi-Chandar, W. G. Knauss, “An experimental investigation into dynamic fracture: II. Microstructural aspects”, International Journal of Fracture, 26 (1984), 65–80 | DOI | MR

[16] J. Song, H. Wang, T. Belytschko, “A comparative study on finite element methods for dynamic fracture”, Computational Mechanics, 12 (2006), 239–250 | DOI

[17] Y. D. Ha, F. Bobaru, “Characteristics of dynamic brittle fracture captured with peridynamics”, Eng. Fract. Mech, 78 (2011), 1156–1168 | DOI