Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2024_26_2_a3, author = {Yu. N. Deryugin and D. A. Shishkanov}, title = {Continuum {Model} of {Peridynamics} for {Brittle} {Fracture} {Problems}}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {157--174}, publisher = {mathdoc}, volume = {26}, number = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2024_26_2_a3/} }
TY - JOUR AU - Yu. N. Deryugin AU - D. A. Shishkanov TI - Continuum Model of Peridynamics for Brittle Fracture Problems JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2024 SP - 157 EP - 174 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2024_26_2_a3/ LA - ru ID - SVMO_2024_26_2_a3 ER -
Yu. N. Deryugin; D. A. Shishkanov. Continuum Model of Peridynamics for Brittle Fracture Problems. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 26 (2024) no. 2, pp. 157-174. http://geodesic.mathdoc.fr/item/SVMO_2024_26_2_a3/
[1] D. A. Shishkanov, M. V. Vetchinnikov, Yu. N. Deryugin, “Peridynamics method for problems solve of solids destruction”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 17:4 (2022), 1–17 (In Russ.) | DOI
[2] Yu. N. Deryugin, M. V. Vetchinnikov, D. A. Shishkanov, “Investigation of different influence functions in peridynamics”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 19:4 (2023), 1–19 (In Russ.) | DOI
[3] S. A. Silling, “Reformulation of elasticity theory for discontinuities and long-range forces”, Journal of Mechanics and Physics of Solids, 2000, 34 pp. | DOI | MR
[4] S. A. Silling, M. Epton, O. Weckner, J. Xu, E. Askari, Peridynamic states and constitutive modeling, University of Nebraska, Lincoln, 2007, 34 pp. | MR
[5] S. A. Silling, R. B. Lehoucq, “Convergence of Peridynamics to Classical Elasticity Theory”, Sandia National Laboratories, 2007, 25 pp. | DOI | MR | Zbl
[6] S. A. Silling, E. Askari, “A meshfree method based on the peridynamic model of solid mechanics”, Computers Structures, 2005, 9 pp. | DOI | Zbl
[7] X. Zhou, Y. Wang, Q. Qian, “Numerical simulation of crack curving and branching in brittle materials under dynamic loads using the extended non-ordinary state-based peridynamics”, European Journal of Mechanics A/Solids, 23 (2016), 277–299 | DOI | MR
[8] W. Liu, Discretized bond-based peridynamics for solid mechanics, Michigan State University, Michigan, 2012, 193 pp. | DOI | MR
[9] S. A. Silling, “Linearized theory of peridynamic states”, Sandia National Laboratories, 27 (2010), 85–111 | MR
[10] F. Bobaru, P. H. Geubelle, J. T. Foster, S. A. Silling, Handbook of Peridynamic Modeling, New York, CRC Press by Taylor Francis Group, LLC, 2017, 586 pp. | DOI | MR
[11] E. Madenci, E. Oterkus, Peridynamic theory and its applications, Springer, New York, 2014, 284 pp. | DOI | Zbl
[12] M. Tupek, J. Rimoli, R. Radovitzky, “An approach for incorporating classical continuum damage models in state-based peridynamics”, Comput. Methods Appl. Mech. Energ., 7 (2013), 20–26 | DOI | MR
[13] X. Gu, Q. Zhang, Y. Yu, “An effective way to control numerical instability of a nonordinary state-based peridynamic elastic model”, Department of Engineering Mechanics, 2017, 8 pp. | DOI | MR
[14] X. Kan, J. Yan, S. Li, A. Zhang, “On differences and comparisons of peridynamic differential operators and nonlocal differential operators”, Computational Mechanics, 2021, 19 pp. | MR
[15] K. Ravi-Chandar, W. G. Knauss, “An experimental investigation into dynamic fracture: II. Microstructural aspects”, International Journal of Fracture, 26 (1984), 65–80 | DOI | MR
[16] J. Song, H. Wang, T. Belytschko, “A comparative study on finite element methods for dynamic fracture”, Computational Mechanics, 12 (2006), 239–250 | DOI
[17] Y. D. Ha, F. Bobaru, “Characteristics of dynamic brittle fracture captured with peridynamics”, Eng. Fract. Mech, 78 (2011), 1156–1168 | DOI