Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2024_26_2_a2, author = {R. V. Zhalnin and A. I. Kulyagin and M. S. Nefedov}, title = {Application of computational algorithms with higher order of accuracy to the modeling of two-dimensional problems on development of hydrodynamic instability}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {143--156}, publisher = {mathdoc}, volume = {26}, number = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2024_26_2_a2/} }
TY - JOUR AU - R. V. Zhalnin AU - A. I. Kulyagin AU - M. S. Nefedov TI - Application of computational algorithms with higher order of accuracy to the modeling of two-dimensional problems on development of hydrodynamic instability JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2024 SP - 143 EP - 156 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2024_26_2_a2/ LA - ru ID - SVMO_2024_26_2_a2 ER -
%0 Journal Article %A R. V. Zhalnin %A A. I. Kulyagin %A M. S. Nefedov %T Application of computational algorithms with higher order of accuracy to the modeling of two-dimensional problems on development of hydrodynamic instability %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2024 %P 143-156 %V 26 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2024_26_2_a2/ %G ru %F SVMO_2024_26_2_a2
R. V. Zhalnin; A. I. Kulyagin; M. S. Nefedov. Application of computational algorithms with higher order of accuracy to the modeling of two-dimensional problems on development of hydrodynamic instability. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 26 (2024) no. 2, pp. 143-156. http://geodesic.mathdoc.fr/item/SVMO_2024_26_2_a2/
[1] O. M. Belotserkovskii, V. V. Demchenko, A. M. Oparin, “Posledovatelnyi perekhod k turbulentnosti v neustoichivosti Rikhtmaiera — Meshkova”, Dokl. RAN, 334:5 (1994), 581-–583
[2] D. L. Youngs, “Numerical simulation of mixing by Rayleigh — Taylor and Richtmyer — Meshkov instabilities”, Laser and Particle Beams, 12:4 (1994), 725–750 | DOI
[3] S. Chandrasekhar, Hydrodynamics and hydromagnetic stability, Oxford: Clarendon Press, 1961, 704 pp. | MR
[4] B. B. Chakraborty, “Rayleigh — Taylor instability of heavy fluid”, Phys. Fluids., 18:8 (1975), 1066–1067 | DOI | Zbl
[5] V. F. Kuropatenko, “Neustanovivshiesya techeniya mnogokomponentnykh sred”, Mat. modelirovanie, 1:2 (1989), 118–136 | Zbl
[6] O. P. Stoyanovskaya, V. V. Lisitsa, S. A. Anoshin, T. A.Savvateeva, T. V. Markelova, “Dispersion Analysis of SPH as a Way to Understand Its Order of Approximation”, Journal of Computational and Applied Mathematics, 438 (2024), 115495 | DOI | MR
[7] R. V. Zhalnin, V. F. Masyagin, E. E. Peskova, V. F. Tishkin, “Modelirovanie razvitiya neustoichivosti Rikhtmaiera–Meshkova s ispolzovaniem razryvnogo metoda Galerkina na lokalno-adaptivnykh setkakh”, Matem. modelirovanie., 32:10 (2020), 34–46 | DOI | Zbl
[8] K. V. Vyaznikov, V. F. Tishkin, A. P. Favorskii, “Postroenie monotonnykh raznostnykh skhem povyshennogo poryadka approksimatsii dlya sistem uravnenii giperbolicheskogo tipa”, Matematicheskoe modelirovanie, 1 (1989), 95–-120 | MR | Zbl
[9] V. F. Tishkin, V. V. Nikishin, I. V. Popov, A. P. Favorskii, “Raznostnye skhemy trekhmernoi gazovoi dinamiki dlya zadachi o razvitii neustoichivosti Rikhtmaera-Meshkova”, Matematicheskoe modelirovanie, 7:5 (1995), 15-–25 | Zbl
[10] V. V. Grigoryev, R. V. Zhalnin, “Comparison of methods for modeling the interaction of a shock wave and a gas at rest with experiment in the problem of the development of the Richtmyer–Meshkov instability”, Parallelnye vychislitelnye tekhnologii – XVIII Vseros. konf. s mezhdunar. uchastiem., 14 (2024), 17–30, Chelyabinsk: Izd. tsentr YuUrGU
[11] P. D. Lax, “Weak solutions of nonlinear hyperbolic equations and their numerical computation”, Communications on Pure and Applied Mathematics, 7 (1954), 159–193 | DOI | MR | Zbl
[12] E. F. Toro, M. Spruce, W. Speares, “Restoration of the contact surface in the HLL-Riemann solver”, Shock Waves, 4 (194), 25–34 | DOI | MR | Zbl
[13] C. W. Shu, “Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws”, ICASE Report, 1997, no. 97–65, 79 | MR
[14] K. R. Bates, N. Nikiforakis, D. Holder, “Richtmyer–Meshkov Instability Induced by the Interaction of a Shock Wave with a Rectangular Block of SF6”, Physics of Fluids, 19 (2007), 036101 | DOI | Zbl
[15] A. V. Danilin, A. V. Solovev, “Ispolzovanie algoritma «KABARE» dlya modelirovaniya turbulentnogo peremeshivaniya na primere neustoichivosti Rikhtmaiera–Meshkova”, Matem. modelirovanie, 30:8 (2018), 3–16 | DOI
[16] X. Luo, M. Wang, T. Si, Zh. Zhai, “On the interaction of a planar shock with an SF6 polygon”, J. Fluid Mech, 773 (2015), 366–394 | DOI