Application of computational algorithms with higher order of accuracy to the modeling of two-dimensional problems on development of hydrodynamic instability
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 26 (2024) no. 2, pp. 143-156.

Voir la notice de l'article provenant de la source Math-Net.Ru

{This article examines application of computational algorithms with an increased order of accuracy for modeling two-dimensional problems of development of hydrodynamic instabilities. The efficiency of using algorithms to improve the accuracy and reliability of modeling in this area is considered. More specifically, the paper describes a numerical algorithm for solving the problem of development of Richtmayer-Meshkov instability. To construct the algorithm, the authors use the WENO scheme of the fifth order of accuracy Several problems are solved numerically using the developed method. The article models such processes as flows at a time of 4 046 microseconds, a change in the width of the region filled with sulfur hexafluoride, numerical schlieren patterns at a time of 877 microseconds, a change in the width of the region filled with heavy gas. The results are obtained by various methods on grids of different dimensions and compared with experimental data. It is shown that schemes with WENO reconstruction of the 5th order of accuracy demonstrate results closer to full-scale experiments.
Keywords: WENO, gas dynamics, adaptive grids, Richtmayer-Meshkov instability
@article{SVMO_2024_26_2_a2,
     author = {R. V. Zhalnin and A. I. Kulyagin and M. S. Nefedov},
     title = {Application of computational algorithms with higher order of accuracy to the modeling of two-dimensional problems on development of hydrodynamic instability},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {143--156},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2024_26_2_a2/}
}
TY  - JOUR
AU  - R. V. Zhalnin
AU  - A. I. Kulyagin
AU  - M. S. Nefedov
TI  - Application of computational algorithms with higher order of accuracy to the modeling of two-dimensional problems on development of hydrodynamic instability
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2024
SP  - 143
EP  - 156
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2024_26_2_a2/
LA  - ru
ID  - SVMO_2024_26_2_a2
ER  - 
%0 Journal Article
%A R. V. Zhalnin
%A A. I. Kulyagin
%A M. S. Nefedov
%T Application of computational algorithms with higher order of accuracy to the modeling of two-dimensional problems on development of hydrodynamic instability
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2024
%P 143-156
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2024_26_2_a2/
%G ru
%F SVMO_2024_26_2_a2
R. V. Zhalnin; A. I. Kulyagin; M. S. Nefedov. Application of computational algorithms with higher order of accuracy to the modeling of two-dimensional problems on development of hydrodynamic instability. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 26 (2024) no. 2, pp. 143-156. http://geodesic.mathdoc.fr/item/SVMO_2024_26_2_a2/

[1] O. M. Belotserkovskii, V. V. Demchenko, A. M. Oparin, “Posledovatelnyi perekhod k turbulentnosti v neustoichivosti Rikhtmaiera — Meshkova”, Dokl. RAN, 334:5 (1994), 581-–583

[2] D. L. Youngs, “Numerical simulation of mixing by Rayleigh — Taylor and Richtmyer — Meshkov instabilities”, Laser and Particle Beams, 12:4 (1994), 725–750 | DOI

[3] S. Chandrasekhar, Hydrodynamics and hydromagnetic stability, Oxford: Clarendon Press, 1961, 704 pp. | MR

[4] B. B. Chakraborty, “Rayleigh — Taylor instability of heavy fluid”, Phys. Fluids., 18:8 (1975), 1066–1067 | DOI | Zbl

[5] V. F. Kuropatenko, “Neustanovivshiesya techeniya mnogokomponentnykh sred”, Mat. modelirovanie, 1:2 (1989), 118–136 | Zbl

[6] O. P. Stoyanovskaya, V. V. Lisitsa, S. A. Anoshin, T. A.Savvateeva, T. V. Markelova, “Dispersion Analysis of SPH as a Way to Understand Its Order of Approximation”, Journal of Computational and Applied Mathematics, 438 (2024), 115495 | DOI | MR

[7] R. V. Zhalnin, V. F. Masyagin, E. E. Peskova, V. F. Tishkin, “Modelirovanie razvitiya neustoichivosti Rikhtmaiera–Meshkova s ispolzovaniem razryvnogo metoda Galerkina na lokalno-adaptivnykh setkakh”, Matem. modelirovanie., 32:10 (2020), 34–46 | DOI | Zbl

[8] K. V. Vyaznikov, V. F. Tishkin, A. P. Favorskii, “Postroenie monotonnykh raznostnykh skhem povyshennogo poryadka approksimatsii dlya sistem uravnenii giperbolicheskogo tipa”, Matematicheskoe modelirovanie, 1 (1989), 95–-120 | MR | Zbl

[9] V. F. Tishkin, V. V. Nikishin, I. V. Popov, A. P. Favorskii, “Raznostnye skhemy trekhmernoi gazovoi dinamiki dlya zadachi o razvitii neustoichivosti Rikhtmaera-Meshkova”, Matematicheskoe modelirovanie, 7:5 (1995), 15-–25 | Zbl

[10] V. V. Grigoryev, R. V. Zhalnin, “Comparison of methods for modeling the interaction of a shock wave and a gas at rest with experiment in the problem of the development of the Richtmyer–Meshkov instability”, Parallelnye vychislitelnye tekhnologii – XVIII Vseros. konf. s mezhdunar. uchastiem., 14 (2024), 17–30, Chelyabinsk: Izd. tsentr YuUrGU

[11] P. D. Lax, “Weak solutions of nonlinear hyperbolic equations and their numerical computation”, Communications on Pure and Applied Mathematics, 7 (1954), 159–193 | DOI | MR | Zbl

[12] E. F. Toro, M. Spruce, W. Speares, “Restoration of the contact surface in the HLL-Riemann solver”, Shock Waves, 4 (194), 25–34 | DOI | MR | Zbl

[13] C. W. Shu, “Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws”, ICASE Report, 1997, no. 97–65, 79 | MR

[14] K. R. Bates, N. Nikiforakis, D. Holder, “Richtmyer–Meshkov Instability Induced by the Interaction of a Shock Wave with a Rectangular Block of SF6”, Physics of Fluids, 19 (2007), 036101 | DOI | Zbl

[15] A. V. Danilin, A. V. Solovev, “Ispolzovanie algoritma «KABARE» dlya modelirovaniya turbulentnogo peremeshivaniya na primere neustoichivosti Rikhtmaiera–Meshkova”, Matem. modelirovanie, 30:8 (2018), 3–16 | DOI

[16] X. Luo, M. Wang, T. Si, Zh. Zhai, “On the interaction of a planar shock with an SF6 polygon”, J. Fluid Mech, 773 (2015), 366–394 | DOI