Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2024_26_1_a2, author = {S. V. Zelik and O. V. Pochinka and A. A. Yagilev}, title = {On the {Minkowski} dimension of some invariant sets of dynamical systems}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {32--43}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2024_26_1_a2/} }
TY - JOUR AU - S. V. Zelik AU - O. V. Pochinka AU - A. A. Yagilev TI - On the Minkowski dimension of some invariant sets of dynamical systems JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2024 SP - 32 EP - 43 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2024_26_1_a2/ LA - ru ID - SVMO_2024_26_1_a2 ER -
%0 Journal Article %A S. V. Zelik %A O. V. Pochinka %A A. A. Yagilev %T On the Minkowski dimension of some invariant sets of dynamical systems %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2024 %P 32-43 %V 26 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2024_26_1_a2/ %G ru %F SVMO_2024_26_1_a2
S. V. Zelik; O. V. Pochinka; A. A. Yagilev. On the Minkowski dimension of some invariant sets of dynamical systems. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 26 (2024) no. 1, pp. 32-43. http://geodesic.mathdoc.fr/item/SVMO_2024_26_1_a2/
[1] P. S. Aleksandrov, B. A. Pasynkov, Vvedenie v teoriyu razmernosti, Nauka, M., 1973, 575 pp. | MR
[2] A.A. Andronov, E.A. Leontovich, “Nekotorye sluchai zavisimosti predelnykh tsiklov ot parametra”, Uch. zapiski Gork. un-ta, 5 (1937), 3-24
[3] A.A. Andronov, A.A. Vitt, S.E. Khaikin, Teoriya kolebanii, Nauka, M., 1937, 568 pp.
[4] E. Hopf, “Abzweigung einer periodishen Losung von einer stationaren Losung eines Differential systems”, Ber. Math.-Phys. Sachsische Academie der Wissenschaften, Leipzig, 94 (1942), 1-22 | MR
[5] S.V. Zelik, “Attraktory. Togda i seichas”, Uspekhi matematicheskikh nauk., 78:4 (2023), 635-677 | MR
[6] C. Bonatti, V. Grines, “Knots as topological invariants for gradient-like diffeomorphisms of the sphere $S^3$”, Journal of dynamical and control systems, 6:4 (2000), 579-602 | DOI | MR | Zbl
[7] T.V. Medvedev, O,V, Pochinka, “The wild Fox-Artin arc in invariant sets of dynamical systems”, Dynamical Systems, 33 (2018), 660-666 | DOI | MR | Zbl
[8] M. Fernandez-Martinez, M.A.Sanchez-Granero, “A new fractal dimension for curves based on fractal structures”, Topology Applications, 203 (2016), 108-124 | DOI | MR | Zbl