On the Minkowski dimension of some invariant sets of dynamical systems
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 26 (2024) no. 1, pp. 32-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known that a fractal set is not a submanifold of the ambient space. However, fractals arise as invariant subsets even in infinitely smooth conditions and the Minkowski dimension serves in this case as a characteristic of complexity of this scale. For example, when the equilibrium state during the Andronov-Hopf bifurcation losses its stability, the closure of the non-singular trajectory is a parametrically defined curve of the fractal type. In this work the fractal dimension of such curves is calculated. In addition, special two-parameter family of functions is studied such that Minkowski dimension of their graphs varies from 1 to 2. The obtained result allows us to implement a regular dynamic system with an isolated hyperbolic point such that the closure of two-dimensional stable manifold of this point may have Minkowski dimension greater than 2. To calculate the graph dimension, the segment of the argument defining the graph is split into two parts. The dimension of the first part of the graph can be estimated from above by direct calculation of the corresponding curve’s length. The upper estimation of the other part’s dimension is provided by means of the area of rectangle containing this curve. The lower estimation of the Minkowski dimension is based on calculating the cardinality of $\varepsilon$-distinguishable set of graph points.
Keywords: Minkowski dimension, set coverage, $\varepsilon$-distinguishable set
Mots-clés : Andronov-Hopf bifurcation
@article{SVMO_2024_26_1_a2,
     author = {S. V. Zelik and O. V. Pochinka and A. A. Yagilev},
     title = {On the {Minkowski} dimension of some invariant sets of dynamical systems},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {32--43},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2024_26_1_a2/}
}
TY  - JOUR
AU  - S. V. Zelik
AU  - O. V. Pochinka
AU  - A. A. Yagilev
TI  - On the Minkowski dimension of some invariant sets of dynamical systems
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2024
SP  - 32
EP  - 43
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2024_26_1_a2/
LA  - ru
ID  - SVMO_2024_26_1_a2
ER  - 
%0 Journal Article
%A S. V. Zelik
%A O. V. Pochinka
%A A. A. Yagilev
%T On the Minkowski dimension of some invariant sets of dynamical systems
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2024
%P 32-43
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2024_26_1_a2/
%G ru
%F SVMO_2024_26_1_a2
S. V. Zelik; O. V. Pochinka; A. A. Yagilev. On the Minkowski dimension of some invariant sets of dynamical systems. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 26 (2024) no. 1, pp. 32-43. http://geodesic.mathdoc.fr/item/SVMO_2024_26_1_a2/

[1] P. S. Aleksandrov, B. A. Pasynkov, Vvedenie v teoriyu razmernosti, Nauka, M., 1973, 575 pp. | MR

[2] A.A. Andronov, E.A. Leontovich, “Nekotorye sluchai zavisimosti predelnykh tsiklov ot parametra”, Uch. zapiski Gork. un-ta, 5 (1937), 3-24

[3] A.A. Andronov, A.A. Vitt, S.E. Khaikin, Teoriya kolebanii, Nauka, M., 1937, 568 pp.

[4] E. Hopf, “Abzweigung einer periodishen Losung von einer stationaren Losung eines Differential systems”, Ber. Math.-Phys. Sachsische Academie der Wissenschaften, Leipzig, 94 (1942), 1-22 | MR

[5] S.V. Zelik, “Attraktory. Togda i seichas”, Uspekhi matematicheskikh nauk., 78:4 (2023), 635-677 | MR

[6] C. Bonatti, V. Grines, “Knots as topological invariants for gradient-like diffeomorphisms of the sphere $S^3$”, Journal of dynamical and control systems, 6:4 (2000), 579-602 | DOI | MR | Zbl

[7] T.V. Medvedev, O,V, Pochinka, “The wild Fox-Artin arc in invariant sets of dynamical systems”, Dynamical Systems, 33 (2018), 660-666 | DOI | MR | Zbl

[8] M. Fernandez-Martinez, M.A.Sanchez-Granero, “A new fractal dimension for curves based on fractal structures”, Topology Applications, 203 (2016), 108-124 | DOI | MR | Zbl