Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2024_26_1_a1, author = {O. V. Germider and V. N. Popov}, title = {Mathematical {Modeling} of {Elastically} {Deformed} {States} of {Thin} {Isotropic} {Plates} {Using} {Chebyshev} {Polynomials}}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {20--31}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2024_26_1_a1/} }
TY - JOUR AU - O. V. Germider AU - V. N. Popov TI - Mathematical Modeling of Elastically Deformed States of Thin Isotropic Plates Using Chebyshev Polynomials JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2024 SP - 20 EP - 31 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2024_26_1_a1/ LA - ru ID - SVMO_2024_26_1_a1 ER -
%0 Journal Article %A O. V. Germider %A V. N. Popov %T Mathematical Modeling of Elastically Deformed States of Thin Isotropic Plates Using Chebyshev Polynomials %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2024 %P 20-31 %V 26 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2024_26_1_a1/ %G ru %F SVMO_2024_26_1_a1
O. V. Germider; V. N. Popov. Mathematical Modeling of Elastically Deformed States of Thin Isotropic Plates Using Chebyshev Polynomials. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 26 (2024) no. 1, pp. 20-31. http://geodesic.mathdoc.fr/item/SVMO_2024_26_1_a1/
[1] S.P. Timoshenko, S. Voinovskii-Kriger, Plastiny i obolochki, Nauka, Moskva, 1966, 636 pp.
[2] S.K. Golushko, S.V. Idimeshev, V.P. Shapeev, “Metod kollokatsii i naimenshikh nevyazok v prilozhenii k zadacham mekhaniki izotropnykh plastin”, Vychislitelnye tekhnologii, 18:6 (2013), 31–43
[3] V.P. Shapeev, L.S. Bryndin, V.A. Belyaev, “hp-Variant metoda kollokatsii i naimenshikh kvadratov s integralnymi kollokatsiyami resheniya bigarmonicheskogo uravneniya”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki., 26:3 (2022), 1-15 | DOI
[4] V.A. Belyaev, L.S. Bryndin, S.K. Golushko, B.V. Semisalov, V.P. Shapeev, “H-, P- i HR-varianty metoda kollokatsii i naimenshikh kvadratov dlya resheniya kraevykh zadach dlya bigarmonicheskogo uravneniya v neregulyarnykh oblastyakh i ikh prilozheniya”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 62:4 (2022), 531-5523 | DOI
[5] N. Mai-Duy, D. Strunin, W. Karunasena, “A new high-order nine-point stencil, based on integrated-RBF approximations, for the first biharmonic equation”, Engineering Analysis with Boundary Elements, 143 (2022), 687-699 | DOI
[6] W. Shao, Wu. X, “An effective Chebyshev tau meshless domain decomposition method based on the integration-differentiation for solving fourth order equations”, Applied Mathematical Modelling, 39:9 (2015), 2554-2569 | DOI
[7] X. Ye, Sh. Zhang, “A family of H-div-div mixed triangular finite elements for the biharmonic equation”, Results in Applied Mathematics, 15 (2022), 100318 | DOI
[8] R.K. Mokhanti, D. Kaur, “Kompaktnaya raznostnaya skhema vysokoi tochnosti dlya odnomernoi nestatsionarnoi kvazilineinoi bigarmonicheskoi zadachi vtorogo roda: prilozhenie k fizicheskim zadacham”, SIAM J. Numer. Anal., 21:1 (2018), 65-82 | DOI
[9] O.M. Lytvyn, O.O. Lytvyn, I.S. Tomanova, “Solving the Biharmonic Plate Bending Problem by the Ritz Method Using Explicit Formulas for Splines of Degree 5”, Cybernetics and Systems Analysis, 54 (2018), 994-947 | DOI
[10] E.M. Zveryaev, M.D. Kovalenko, D.A. Abrukov, I.V. Menshova, A.P. Kerzhaev, “O razlozheniyakh po funktsiyam Papkovicha–Fadlya v zadache izgiba plastiny”, Preprinty IPM im. M.V.Keldysha, 2019, 38, 28 pp. | DOI
[11] V.I. Ryazhskikh, M.I. Slyusarev, M.I. Popov, “Chislennoe integrirovanie bigarmonicheskogo uravneniya v kvadratnoi oblasti”, Vestn. S.-Peterburg. un-ta. Ser. 10. Prikl. matem. Inform. Prots. upr., 1:1 (2013), 52-62
[12] A.D. Tebyakin, A.V. Krysko, M.V. Zhigalov, V.A Krysko, “Uprugoplasticheskoe deformirovanie nanoplastin. Metod variatsionnykh iteratsii (rasshirennyi metod Kantorovicha)”, Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya: Matematika. Mekhanika. Informatika., 22:4 (2022), 494–505 | DOI
[13] A. Baseri, S. Abbasbandy, E. Babolian, “A collocation method for fractional diffusion equation in a long time with Chebyshev functions”, Applied Mathematics and Computation, 322 (2018), 55-65 | DOI
[14] J. Mason, D. Handscomb, Chebyshev polynomials, Chapman and Hall/CRC, New York, 2002, 360 pp.
[15] S. Liu, G. Trenkler, “Hadamard, Khatri-Rao, Kronecker and other matrix products”, International Journal of Information and Systems Sciences, 4:1 (2008), 160-177
[16] G. Yuksel, O. Isik, M. Sezer, “Error analysis of the Chebyshev collocation method for linear second-order partial differential equations”, International Journal of Computer Mathematics, 92:10 (2015), 2121-2138 | DOI
[17] O.V. Germider, V.N. Popov, “O reshenii modelnogo kineticheskogo uravneniya ES”, Chebyshevskii sbornik, 23:3 (2022), 37-49 | DOI
[18] G. Chen, Zh. Li, P. Lin, “A fast finite difference method for biharmonic equations on irregular domains and its application to an incompressible Stokes flow”, Advances in Computational Mathematics, 29 (2008), 113-133 | DOI