Mathematical Modeling of Elastically Deformed States of Thin Isotropic Plates Using Chebyshev Polynomials
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 26 (2024) no. 1, pp. 20-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper a method for solving an inhomogeneous biharmonic equation while modeling elastically deformed states of thin isotropic rectangular plates using a system of orthogonal Chebyshev polynomials of the first kind is proposed. The method is based on representation of a solution to the initial biharmonic equation as a finite sum of Chebyshev series by each independent variable in combination with matrix transformations and properties of Chebyshev polynomials. The problem is examined for the case when a transverse load acts on the plate, and the hinge fastening along the edges of the plate is taken as boundary conditions. Using the extremes and zeros of Chebyshev polynomials of the first kind as collocation points, the boundary value problem is reduced to a system of linear algebraic equations. Decomposition coefficients of desired function with respect to Chebyshev polynomials act as unknowns in this system. As the comparison showed, the results obtained by this method with a high degree of accuracy coincide with similar results derived using analytical approach that are given in the article. The paper also presents the results of calculations using the proposed method in the case when two opposite edges of the plate are pinched and two others are pivotally fixed. The comparison with similar results of modeling the stress-strain states of rectangular plates which are presented in the open sources is carried out.
Keywords: inhomogeneous biharmonic equation, Chebyshev polynomials, deformation of a thin isotropic plate
@article{SVMO_2024_26_1_a1,
     author = {O. V. Germider and V. N. Popov},
     title = {Mathematical {Modeling} of {Elastically} {Deformed} {States} of {Thin} {Isotropic} {Plates} {Using} {Chebyshev} {Polynomials}},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {20--31},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2024_26_1_a1/}
}
TY  - JOUR
AU  - O. V. Germider
AU  - V. N. Popov
TI  - Mathematical Modeling of Elastically Deformed States of Thin Isotropic Plates Using Chebyshev Polynomials
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2024
SP  - 20
EP  - 31
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2024_26_1_a1/
LA  - ru
ID  - SVMO_2024_26_1_a1
ER  - 
%0 Journal Article
%A O. V. Germider
%A V. N. Popov
%T Mathematical Modeling of Elastically Deformed States of Thin Isotropic Plates Using Chebyshev Polynomials
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2024
%P 20-31
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2024_26_1_a1/
%G ru
%F SVMO_2024_26_1_a1
O. V. Germider; V. N. Popov. Mathematical Modeling of Elastically Deformed States of Thin Isotropic Plates Using Chebyshev Polynomials. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 26 (2024) no. 1, pp. 20-31. http://geodesic.mathdoc.fr/item/SVMO_2024_26_1_a1/

[1] S.P. Timoshenko, S. Voinovskii-Kriger, Plastiny i obolochki, Nauka, Moskva, 1966, 636 pp.

[2] S.K. Golushko, S.V. Idimeshev, V.P. Shapeev, “Metod kollokatsii i naimenshikh nevyazok v prilozhenii k zadacham mekhaniki izotropnykh plastin”, Vychislitelnye tekhnologii, 18:6 (2013), 31–43

[3] V.P. Shapeev, L.S. Bryndin, V.A. Belyaev, “hp-Variant metoda kollokatsii i naimenshikh kvadratov s integralnymi kollokatsiyami resheniya bigarmonicheskogo uravneniya”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki., 26:3 (2022), 1-15 | DOI

[4] V.A. Belyaev, L.S. Bryndin, S.K. Golushko, B.V. Semisalov, V.P. Shapeev, “H-, P- i HR-varianty metoda kollokatsii i naimenshikh kvadratov dlya resheniya kraevykh zadach dlya bigarmonicheskogo uravneniya v neregulyarnykh oblastyakh i ikh prilozheniya”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 62:4 (2022), 531-5523 | DOI

[5] N. Mai-Duy, D. Strunin, W. Karunasena, “A new high-order nine-point stencil, based on integrated-RBF approximations, for the first biharmonic equation”, Engineering Analysis with Boundary Elements, 143 (2022), 687-699 | DOI

[6] W. Shao, Wu. X, “An effective Chebyshev tau meshless domain decomposition method based on the integration-differentiation for solving fourth order equations”, Applied Mathematical Modelling, 39:9 (2015), 2554-2569 | DOI

[7] X. Ye, Sh. Zhang, “A family of H-div-div mixed triangular finite elements for the biharmonic equation”, Results in Applied Mathematics, 15 (2022), 100318 | DOI

[8] R.K. Mokhanti, D. Kaur, “Kompaktnaya raznostnaya skhema vysokoi tochnosti dlya odnomernoi nestatsionarnoi kvazilineinoi bigarmonicheskoi zadachi vtorogo roda: prilozhenie k fizicheskim zadacham”, SIAM J. Numer. Anal., 21:1 (2018), 65-82 | DOI

[9] O.M. Lytvyn, O.O. Lytvyn, I.S. Tomanova, “Solving the Biharmonic Plate Bending Problem by the Ritz Method Using Explicit Formulas for Splines of Degree 5”, Cybernetics and Systems Analysis, 54 (2018), 994-947 | DOI

[10] E.M. Zveryaev, M.D. Kovalenko, D.A. Abrukov, I.V. Menshova, A.P. Kerzhaev, “O razlozheniyakh po funktsiyam Papkovicha–Fadlya v zadache izgiba plastiny”, Preprinty IPM im. M.V.Keldysha, 2019, 38, 28 pp. | DOI

[11] V.I. Ryazhskikh, M.I. Slyusarev, M.I. Popov, “Chislennoe integrirovanie bigarmonicheskogo uravneniya v kvadratnoi oblasti”, Vestn. S.-Peterburg. un-ta. Ser. 10. Prikl. matem. Inform. Prots. upr., 1:1 (2013), 52-62

[12] A.D. Tebyakin, A.V. Krysko, M.V. Zhigalov, V.A Krysko, “Uprugoplasticheskoe deformirovanie nanoplastin. Metod variatsionnykh iteratsii (rasshirennyi metod Kantorovicha)”, Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya: Matematika. Mekhanika. Informatika., 22:4 (2022), 494–505 | DOI

[13] A. Baseri, S. Abbasbandy, E. Babolian, “A collocation method for fractional diffusion equation in a long time with Chebyshev functions”, Applied Mathematics and Computation, 322 (2018), 55-65 | DOI

[14] J. Mason, D. Handscomb, Chebyshev polynomials, Chapman and Hall/CRC, New York, 2002, 360 pp.

[15] S. Liu, G. Trenkler, “Hadamard, Khatri-Rao, Kronecker and other matrix products”, International Journal of Information and Systems Sciences, 4:1 (2008), 160-177

[16] G. Yuksel, O. Isik, M. Sezer, “Error analysis of the Chebyshev collocation method for linear second-order partial differential equations”, International Journal of Computer Mathematics, 92:10 (2015), 2121-2138 | DOI

[17] O.V. Germider, V.N. Popov, “O reshenii modelnogo kineticheskogo uravneniya ES”, Chebyshevskii sbornik, 23:3 (2022), 37-49 | DOI

[18] G. Chen, Zh. Li, P. Lin, “A fast finite difference method for biharmonic equations on irregular domains and its application to an incompressible Stokes flow”, Advances in Computational Mathematics, 29 (2008), 113-133 | DOI