Nonlinear mathematical model of pressure measurement systems in gas-liquid media
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 25 (2023) no. 4, pp. 313-325.

Voir la notice de l'article provenant de la source Math-Net.Ru

The primary element of the instrumentation for measuring the pressure of a gas-liquid medium is a sensor that supplies data on the pressure of the working medium. It determines the proper functioning of machines, mechanisms, and systems. Increasing the service life, reducing development time, and reducing the cost of sensors is one of the important tasks. Mathematical modeling of pressure measurement systems’ functioning plays an important role at the design stage of such systems. This article examines a nonlinear one-dimensional model of a mechanical system “pipeline – pressure sensor” designed to measure and control the pressure of the working gas-liquid medium in the combustion chambers of engines. In such a system, the sensor is connected to the engine via a pipeline and is located at some distance from it to reduce the impact of vibration accelerations and high temperatures. The purpose of the work is to study the dynamics and stability of joint oscillations of the elastic sensitive element in the pressure sensor and of the working medium in the pipeline for a given law of pressure change in the combustion chamber. The study is provided under the assumption that the working medium is ideal and compressible. To describe the movement of the working medium (gas or liquid), a nonlinear model of fluid and gas mechanics is used. Mathematical description of the process of interest includes an initial boundary value problem, whose formulation contains a nonlinear partial differential equation. To solve it, numerical-analytical method of solution based on the Galerkin method is proposed, which makes it possible to reduce the study of the problem to solving a system of ordinary differential equations. A numerical experiment is carried out and examples of calculating the dynamics of the sensor's sensitive element are presented. The proposed mathematical model makes it possible to determine the law of change in the deviation of the sensor's sensitive element depending on the law of change in pressure in the combustion chamber. The research results are intended for use at the design stage of pressure measurement systems.
Keywords: pressure sensor, pipeline, dynamics, differential equations, Galerkin method
@article{SVMO_2023_25_4_a6,
     author = {P. A. Vel'misov and Yu. A. Tamarova},
     title = {Nonlinear mathematical model of pressure measurement systems in gas-liquid media},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {313--325},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2023_25_4_a6/}
}
TY  - JOUR
AU  - P. A. Vel'misov
AU  - Yu. A. Tamarova
TI  - Nonlinear mathematical model of pressure measurement systems in gas-liquid media
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2023
SP  - 313
EP  - 325
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2023_25_4_a6/
LA  - ru
ID  - SVMO_2023_25_4_a6
ER  - 
%0 Journal Article
%A P. A. Vel'misov
%A Yu. A. Tamarova
%T Nonlinear mathematical model of pressure measurement systems in gas-liquid media
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2023
%P 313-325
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2023_25_4_a6/
%G ru
%F SVMO_2023_25_4_a6
P. A. Vel'misov; Yu. A. Tamarova. Nonlinear mathematical model of pressure measurement systems in gas-liquid media. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 25 (2023) no. 4, pp. 313-325. http://geodesic.mathdoc.fr/item/SVMO_2023_25_4_a6/

[1] L. G. Etkin, Vibrochastotnye datchiki. Teoriya i praktika., Izd-vo MGTU im. N.E. Baumana, M., 2004, 407 pp.

[2] A. A. Kazaryan, G. P. Groshev, “Universalnyi datchik davleniya”, Izmeritelnaya tekhnika, 3 (2008), 26–30

[3] Zh. Ash i dr., Datchiki izmeritelnykh sistem: V 2-kh knigakh; per. s frants., Mir, M., 1992

[4] D. I. Ageikin, E. N. Kostina, N. N. Kuznetsova, Datchiki kontrolya i regulirovaniya, N. Mashinostroenie, M., 1965, 928 pp.

[5] V. P. Korsunov, Uprugie chuvstvitelnye elementy, Izd-vo Saratovskogo un-ta, Saratov, 1980, 264 pp.

[6] Datchiki. Preobrazovateli. Sistemy: Katalog., Federalnyi nauchno-proizvodstvennyi tsentr FGUP NII fizicheskikh izmerenii, Penza, 2012

[7] V. M. Pankratov, V. E. Dzhashitov, V. I. Ulybin, E. A. Mokrov, V. A. Semenov, D. V. Tikhomirov, “Matematicheskie modeli funktsionirovaniya datchika davleniya dlya kosmicheskikh letatelnykh apparatov pri nestatsionarnoi temperature izmeryaemoi i okruzhayuschei sred”, Mikrosistemnaya tekhnika, 2003, no. 6, 20–29

[8] E. M. Belozubov, N. E. Belozubova, “Povyshenie stoikosti tonkoplenochnykh nano- i mikrosistem i datchikov davleniya na ikh osnove k vozdeistviyu povushennykh vibrouskorenii”, Trudy Mezhdunarodnogo simpoziuma “Nadezhnost i kachestvo”, 2 (2011), 426–429

[9] A. V. Ankilov, P. A. Velmisov, V. D. Gorbokonenko, Yu. V. Pokladova, Matematicheskoe modelirovanie mekhanicheskoi sistemy «truboprovod - datchik davleniya», UlGTU, Ulyanovsk, 2008, 188 pp.

[10] P. A. Velmisov, Yu. V. Pokladova, Issledovanie dinamiki deformiruemykh elementov nekotorykh aerogidrouprugikh sistem, UlGTU, Ulyanovsk, 2018, 152 pp.

[11] P. A. Velmisov, Yu. V. Pokladova, E. S. Serebryannikova, “Matematicheskoe modelirovanie sistemy «truboprovod - datchik davleniya»”, Zhurnal Srednevolzhskogo matematicheskogo obschestva, 12:4 (2010), 85–-93

[12] P. A. Velmisov, Yu. V. Pokladova, “Mathematical modelling of the “pipeline – pressure sensor” system”, Journal of Physics: Conference Series, 1353 (2019), 1–6 | DOI

[13] P. A. Velmisov, Yu. V. Pokladova, U. J.Mizher, “Mathematical modelling of the mechanical system “pipeline – pressure sensor””, AIP Conference Proceedings, 2172 (2019) | DOI

[14] A. I. Zemlyanukhin, S. V. Ivanov, L. I.Mogilevich, V. S.Popov, A. Yu. Blinkov, “Matematicheskaya model dlya issledovaniya nelineinykh voln v uprugoi tsilindricheskoi obolochke, okruzhennoi uprugoi sredoi”, Prikladnaya matematika i mekhanika., 2014, no. 10, 80–83

[15] Yu. A. Blinkov, E. V. Evdokimova, L. I.Mogilevich, A. Yu.Rebrina, “Modelirovanie volnovykh protsessov v dvukh soosnykh obolochkakh, zapolnennykh vyazkoi zhidkostyu i okruzhennykh uprugoi sredoi”, Vestnik RUDN. Seriya MIF., 26:3 (2018), 203–215 | DOI

[16] L. I. Mogilevich, D. V. Kondratov, T. S.Kondratova, S. V.Ivanov, “Matematicheskoe modelirovanie voln deformatsii v dvukh soosnykh, kubicheski nelineinykh obolochkakh, vzaimodeistvuyuschikh s okruzhayuschei sredoi i zapolnennykh zhidkostyu”, Matematicheskoe modelirovanie, kompyuternyi i naturnyi eksperiment v estestvennykh naukakh, 4 (2020) | DOI

[17] P. A. Velmisov, Yu. A. Tamarova, “Matematicheskoe modelirovanie sistem izmereniya davleniya v gazozhidkostnykh sredakh”, Zhurnal SVMO, 22:3 (2020), 352–-367 | DOI

[18] P. A. Velmisov, Yu. A. Tamarova, N. D. Aleksanin, N. I. Nurullin, “Issledovanie dinamicheskikh protsessov v sistemakh izmereniya davleniya gazozhidkostnykh sred”, Zhurnal SVMO, 23:4 (2021), 461–-471

[19] K. Fletcher, Chislennye metody na osnove metoda Galerkina, M.: Mir, 1988, 353 pp.