Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2023_25_4_a6, author = {P. A. Vel'misov and Yu. A. Tamarova}, title = {Nonlinear mathematical model of pressure measurement systems in gas-liquid media}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {313--325}, publisher = {mathdoc}, volume = {25}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2023_25_4_a6/} }
TY - JOUR AU - P. A. Vel'misov AU - Yu. A. Tamarova TI - Nonlinear mathematical model of pressure measurement systems in gas-liquid media JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2023 SP - 313 EP - 325 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2023_25_4_a6/ LA - ru ID - SVMO_2023_25_4_a6 ER -
%0 Journal Article %A P. A. Vel'misov %A Yu. A. Tamarova %T Nonlinear mathematical model of pressure measurement systems in gas-liquid media %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2023 %P 313-325 %V 25 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2023_25_4_a6/ %G ru %F SVMO_2023_25_4_a6
P. A. Vel'misov; Yu. A. Tamarova. Nonlinear mathematical model of pressure measurement systems in gas-liquid media. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 25 (2023) no. 4, pp. 313-325. http://geodesic.mathdoc.fr/item/SVMO_2023_25_4_a6/
[1] L. G. Etkin, Vibrochastotnye datchiki. Teoriya i praktika., Izd-vo MGTU im. N.E. Baumana, M., 2004, 407 pp.
[2] A. A. Kazaryan, G. P. Groshev, “Universalnyi datchik davleniya”, Izmeritelnaya tekhnika, 3 (2008), 26–30
[3] Zh. Ash i dr., Datchiki izmeritelnykh sistem: V 2-kh knigakh; per. s frants., Mir, M., 1992
[4] D. I. Ageikin, E. N. Kostina, N. N. Kuznetsova, Datchiki kontrolya i regulirovaniya, N. Mashinostroenie, M., 1965, 928 pp.
[5] V. P. Korsunov, Uprugie chuvstvitelnye elementy, Izd-vo Saratovskogo un-ta, Saratov, 1980, 264 pp.
[6] Datchiki. Preobrazovateli. Sistemy: Katalog., Federalnyi nauchno-proizvodstvennyi tsentr FGUP NII fizicheskikh izmerenii, Penza, 2012
[7] V. M. Pankratov, V. E. Dzhashitov, V. I. Ulybin, E. A. Mokrov, V. A. Semenov, D. V. Tikhomirov, “Matematicheskie modeli funktsionirovaniya datchika davleniya dlya kosmicheskikh letatelnykh apparatov pri nestatsionarnoi temperature izmeryaemoi i okruzhayuschei sred”, Mikrosistemnaya tekhnika, 2003, no. 6, 20–29
[8] E. M. Belozubov, N. E. Belozubova, “Povyshenie stoikosti tonkoplenochnykh nano- i mikrosistem i datchikov davleniya na ikh osnove k vozdeistviyu povushennykh vibrouskorenii”, Trudy Mezhdunarodnogo simpoziuma “Nadezhnost i kachestvo”, 2 (2011), 426–429
[9] A. V. Ankilov, P. A. Velmisov, V. D. Gorbokonenko, Yu. V. Pokladova, Matematicheskoe modelirovanie mekhanicheskoi sistemy «truboprovod - datchik davleniya», UlGTU, Ulyanovsk, 2008, 188 pp.
[10] P. A. Velmisov, Yu. V. Pokladova, Issledovanie dinamiki deformiruemykh elementov nekotorykh aerogidrouprugikh sistem, UlGTU, Ulyanovsk, 2018, 152 pp.
[11] P. A. Velmisov, Yu. V. Pokladova, E. S. Serebryannikova, “Matematicheskoe modelirovanie sistemy «truboprovod - datchik davleniya»”, Zhurnal Srednevolzhskogo matematicheskogo obschestva, 12:4 (2010), 85–-93
[12] P. A. Velmisov, Yu. V. Pokladova, “Mathematical modelling of the “pipeline – pressure sensor” system”, Journal of Physics: Conference Series, 1353 (2019), 1–6 | DOI
[13] P. A. Velmisov, Yu. V. Pokladova, U. J.Mizher, “Mathematical modelling of the mechanical system “pipeline – pressure sensor””, AIP Conference Proceedings, 2172 (2019) | DOI
[14] A. I. Zemlyanukhin, S. V. Ivanov, L. I.Mogilevich, V. S.Popov, A. Yu. Blinkov, “Matematicheskaya model dlya issledovaniya nelineinykh voln v uprugoi tsilindricheskoi obolochke, okruzhennoi uprugoi sredoi”, Prikladnaya matematika i mekhanika., 2014, no. 10, 80–83
[15] Yu. A. Blinkov, E. V. Evdokimova, L. I.Mogilevich, A. Yu.Rebrina, “Modelirovanie volnovykh protsessov v dvukh soosnykh obolochkakh, zapolnennykh vyazkoi zhidkostyu i okruzhennykh uprugoi sredoi”, Vestnik RUDN. Seriya MIF., 26:3 (2018), 203–215 | DOI
[16] L. I. Mogilevich, D. V. Kondratov, T. S.Kondratova, S. V.Ivanov, “Matematicheskoe modelirovanie voln deformatsii v dvukh soosnykh, kubicheski nelineinykh obolochkakh, vzaimodeistvuyuschikh s okruzhayuschei sredoi i zapolnennykh zhidkostyu”, Matematicheskoe modelirovanie, kompyuternyi i naturnyi eksperiment v estestvennykh naukakh, 4 (2020) | DOI
[17] P. A. Velmisov, Yu. A. Tamarova, “Matematicheskoe modelirovanie sistem izmereniya davleniya v gazozhidkostnykh sredakh”, Zhurnal SVMO, 22:3 (2020), 352–-367 | DOI
[18] P. A. Velmisov, Yu. A. Tamarova, N. D. Aleksanin, N. I. Nurullin, “Issledovanie dinamicheskikh protsessov v sistemakh izmereniya davleniya gazozhidkostnykh sred”, Zhurnal SVMO, 23:4 (2021), 461–-471
[19] K. Fletcher, Chislennye metody na osnove metoda Galerkina, M.: Mir, 1988, 353 pp.