On the similarity over the ring of integers of certain nilpotent matrices of maximal rank
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 25 (2023) no. 4, pp. 284-298.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the problem of matrix similarity recognition over the ring of integers for some families of matrices. Namely, nilpotent upper triangular matrices of maximal rank are considered such that only first and second superdiagonals of these matrices are non-zero. Several necessary conditions are obtained for similarity of such matrices to matrices of the form $\mathrm{superdiag}(a_1,a_2,\ldots,a_{n-1})$ with a single non-zero superdiagonal, that is a generalization of the Jordan cell $J_n(0)=\mathrm{superdiag}(1,1,\ldots,1)$. These conditions are formulated in simple terms of divisibility and greatest common divisors of matrix elements. The result is obtained by reducing the problem of similarity recognition to the problem of solving in integers a system of linear equations and applying the known necessary similarity conditions for arbitrary matrices. Under some additional conditions on the elements $a_1,a_2,\ldots,a_{n-1}$ of the first superdiagonal of matrix $A$, it is proven that the matrix $A$ is similar to matrix $\mathrm{superdiag}(a_1,a_2,\ldots,a_{n-1})$ regardless of the values of the elements of the second superdiagonal. Moreover, for the considered matrices of the third and the fourth orders, easily verifiable necessary and sufficient similarity conditions are obtained describing their similarity to a matrix of the form $\mathrm{superdiag}(a_1,a_2,\ldots,a_{n-1})$.
Keywords: similarity of matrices, Smith normal diagonal form, ring of integers
Mots-clés : Jordan form, nilpotent matrix
@article{SVMO_2023_25_4_a4,
     author = {S. V. Sidorov and G. V. Utkin},
     title = {On the similarity over the ring of integers of certain nilpotent matrices of maximal rank},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {284--298},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2023_25_4_a4/}
}
TY  - JOUR
AU  - S. V. Sidorov
AU  - G. V. Utkin
TI  - On the similarity over the ring of integers of certain nilpotent matrices of maximal rank
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2023
SP  - 284
EP  - 298
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2023_25_4_a4/
LA  - ru
ID  - SVMO_2023_25_4_a4
ER  - 
%0 Journal Article
%A S. V. Sidorov
%A G. V. Utkin
%T On the similarity over the ring of integers of certain nilpotent matrices of maximal rank
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2023
%P 284-298
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2023_25_4_a4/
%G ru
%F SVMO_2023_25_4_a4
S. V. Sidorov; G. V. Utkin. On the similarity over the ring of integers of certain nilpotent matrices of maximal rank. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 25 (2023) no. 4, pp. 284-298. http://geodesic.mathdoc.fr/item/SVMO_2023_25_4_a4/

[1] R. A. Sarkisjan, “Conjugacy problem for sets of integral matrices”, Math. Notes, 25:6 (1979), 419–426 | DOI | MR

[2] Fritz J. Grunewald, Word Problems II, Word Problems II, 1980

[3] Eick B., Hofmann T, E. A. O’Brien, “The conjugacy problem in $\mathrm{GL}(n,\mathbb{Z})$”, J. Lond. Math. Soc., 100:3 (2019), 731–756 | DOI | MR | Zbl

[4] D. Husert, Similarity of integer matrices, PhD Thesis, University of Paderborn, 2017, 147 pp.

[5] Marseglia S., “Computing the ideal class monoid of an order”, J. Lond. Math. Soc., 101:3 (2019) | DOI | MR

[6] J. Opgenorth, W. Plesken, and T. Schulz, “Crystallographic algorithms and tables”, Acta Cryst. Sect., 54:5 (1998), 517–531 | DOI | MR | Zbl

[7] O. Karpenkov, “Multidimensional Gauss reduction theory for conjugacy classes of $\mathrm{SL}(n,\mathbb{Z})$”, J. Theor. Nombres Bordeaux, 25:1 (2013), 99–109 | DOI | MR | Zbl

[8] S. V. Sidorov, “O podobii matrits s tselochislennym spektrom nad koltsom tselykh chisel”, Izvestiya vysshikh uchebnykh zavedenii. Matematika, 172:3 (2011), 86–94

[9] H. Appelgate, H. Onishi, “The similarity problem $3\times3$ integer matrices”, Linear Algebra Appl., 42:2 (1982), 159–174 | DOI | MR | Zbl

[10] S. V. Sidorov, “O podobii matrits tretego poryadka nad koltsom tselykh chisel, imeyuschikh privodimyi kharakteristicheskii mnogochlen”, Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo, 172:1 (2009), 119–127

[11] S. V. Sidorov, Vydelenie effektivno razreshimykh klassov v zadache podobiya matrits nad koltsom tselykh chisel, dis. kand. fiz.-mat. nauk, N. Novgorod, 2015, 121 pp.

[12] V. N. Shevchenko, S. V. Sidorov, “O podobii matrits vtorogo poryadka nad koltsom tselykh chisel”, Izvestiya vysshikh uchebnykh zavedenii. Matematika, 50:4 (2006), 56–63 | MR | Zbl

[13] S. V. Sidorov, E. E. Chilina, “O negiperbolicheskikh algebraicheskikh avtomorfizmakh dvumernogo tora”, Zhurnal SVMO, 23:3 (2021), 295–307 | Zbl

[14] V. V. Gorbatsevich, “Compact solvmanifolds of dimension at most $4$”, Siberian Mathematical Journal, 50:2 (2009), 239–252 | DOI | MR | Zbl

[15] S. V. Sidorov, “O podobii nekotorykh tselochislennykh matrits s edinstvennym sobstvennym znacheniem nad koltsom tselykh chisel”, Matem. zametki, 105:5 (2019), 763–770 | DOI | MR | Zbl

[16] M. Newman, Integral matrices, Academic Press, N. Y., London., 1972 | MR | Zbl

[17] F. Lazebnik, “On Systems of Linear Diophantine Equations”, Mathematics Magazine, 69 (1996), 261–266 | DOI | MR | Zbl

[18] A. Schrijver, Theory of Linear and Integer Programming, Wiley, 1998, 464 pp. | MR | Zbl