Interaction of a sparce particle stratum with a constantly heated plane in presence of a transverse temperature gradient
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 25 (2023) no. 3, pp. 174-186.

Voir la notice de l'article provenant de la source Math-Net.Ru

While modelling dispersions in containers or tubes it may be necessary to find distortions brought by the suspended particles in the temperature distribution in a vessel. Essential step of such a calculation is to determine of temperature field emerging when the particles are placed near the plane wall of the vessel. For simplicity one may suppose additionally that the carrying medium is stationary and that the particles are spherical. Solving this problem, the authors replace the plane by a fictitious particle that is mirror-positioned with respect to a given one. This allows to use multipole expansion for representation of the temperature that is a harmonic function in the case discussed. The obtained solution is used to find effective heat conduction coefficient of particles’ stratum placed in a half-space bounded by a plane with constant temperature. To do this, the authors average the temperature in the medium by the particles’ positions and compare the result with the solution of reference problem about temperature distribution in a half-space with a uniform stratum of other thermal conductance. The calculation is provided under the assumption that suspended spheres are placed rarely and therefore interact only with the plane but not with each other. A correction term is obtained that must be included in the expression for heat conduction coefficient if the total medium longitude in the direction orthogonal to the plane is finite.
Keywords: thermodynamic interaction, effective heat conduction coefficient
Mots-clés : fictitous particle, multipole expansion, tensor coefficients
@article{SVMO_2023_25_3_a4,
     author = {A. O. Syromyasov and Yu. P. Edeleva},
     title = {Interaction of a sparce particle stratum with a constantly heated plane in presence of a transverse temperature gradient},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {174--186},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2023_25_3_a4/}
}
TY  - JOUR
AU  - A. O. Syromyasov
AU  - Yu. P. Edeleva
TI  - Interaction of a sparce particle stratum with a constantly heated plane in presence of a transverse temperature gradient
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2023
SP  - 174
EP  - 186
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2023_25_3_a4/
LA  - ru
ID  - SVMO_2023_25_3_a4
ER  - 
%0 Journal Article
%A A. O. Syromyasov
%A Yu. P. Edeleva
%T Interaction of a sparce particle stratum with a constantly heated plane in presence of a transverse temperature gradient
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2023
%P 174-186
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2023_25_3_a4/
%G ru
%F SVMO_2023_25_3_a4
A. O. Syromyasov; Yu. P. Edeleva. Interaction of a sparce particle stratum with a constantly heated plane in presence of a transverse temperature gradient. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 25 (2023) no. 3, pp. 174-186. http://geodesic.mathdoc.fr/item/SVMO_2023_25_3_a4/

[1] Maksvell Dzh. K., Traktat ob elektrichestve i magnetizme, v. 1, Clarendon Press, Oxford, 1873 | MR

[2] Berdichevskii A. L., “Ob effektivnoi teploprovodnosti sred s periodicheski raspolozhennymi vklyucheniyami”, Doklady AN SSSR, 247:6 (1979), 1363–1367 (In Russ.) | MR

[3] R. Thakur, A. Sharma, R. Govindarajan, “Early evolution of optimal perturbations in a viscosity-stratified channel”, Journal of Fluid Mechanics, 914 (2021) | DOI | MR | Zbl

[4] S. Ziegler, A.-S. Smith, “Hydrodynamic particle interactions in linear and radial viscosity gradients”, Journal of Fluid Mechanics, 943 (2022) | DOI | MR

[5] F. H. Stillinger Jr., “Interfacial solutions of the Poisson – Boltzmann equation”, Journal of Chemical Physics, 35:5 (1961), 1584–1589 | DOI | MR

[6] Y. Hao, S. Haber, “Electrophoretic motion of a charged spherical particle narmal to a planar dielectric wall”, International Journal of Multiphase Flow, 24:5 (1998), 793–824 | DOI

[7] Sennitskii V. L., “O silovom vzaimodeistvii shara i vyazkoi zhidkosti v prisutstvii stenki”, Prikladnaya matematika i tekhnicheskaya fizika, 41:1 (2000), 50–54

[8] Khappel Dzh., Brenner G., Gidrodinamika pri malykh chislakh Reinoldsa, Springer, Netherlands, 1983, 553 pp.

[9] H. Liu, H. H. Bau, “The dielectrophoresis of cylindrical and spherical particles submerged in shells and in semi-infinite media”, Physics of Fluids, 16:5 (2004), 1217–1228 | DOI

[10] Baranov V. E., Martynov S. I., “Modelirovanie dinamiki chastits v vyazkoi zhidkosti pri nalichii ploskoi stenki”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 50:9 (2010), 1588–1604 | MR

[11] Vladimirov V. S., Zharinov V. V., Uravneniya matematicheskoi fiziki, Fizmatlit, Moskva, 2004, 400 pp. (In Russ.)

[12] Syromyasov A. O., “Termodinamicheskoe vzaimodeistvie sfericheskikh chastits v srede s postoyannym gradientom temperatury”, Vestnik Nizhegorodskogo universiteta im. N. I. Lobachevskogo., 4:3 (2011), 1158–1160 (In Russ.)

[13] Landau L. D., Lifshits E. M., Teoreticheskaya fizika. T. VI. Gidrodinamika., Heinemann, Butterworth, 1987, 539 pp. | MR