Mathematical models of joint calculation of electric and thermal fields in electrochemical systems (in electrolytes)
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 25 (2023) no. 3, pp. 150-158.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper studies mathematical models for a joint calculation of electric and thermal fields in electrochemical systems (in electrolytes). As is known, passing of electric current through an electrolyte is accompanied by release of Joule heat. The consequence of temperature redistribution in an electrochemical system is a change in the main physical and chemical parameters: viscosity and density of the conductive medium, specific electrical and thermal conductivity, heat transfer coefficient, etc. Taking into account in mathematical models the mutual influence of thermal and electric fields is of particular importance in the technologies of electrolysis of non-ferrous metals (primarily in the industrial production of aluminum) that is accompanied by high-temperature conditions and intensive electrical heat and mass transfer. The processes of electrolytic-plasma removal of coatings, polishing of parts and plasma-electrolytic oxidation attract special attention from the machine-building industry due to the possibility of qualitative improvement of surface properties. In the article correctness of statements of nonlinear models are investigated. The question of unique solvability of the system is explored and a priori estimates of the generalized solution in the Sobolev norms are established. Also, the system of nonlinear partial derivative equations considered in the paper can describe a mathematical model for the joint calculation of electric and thermal fields in solid conductors of electricity and heat.
Keywords: mathematical modeling, nonlinear system of elliptic equations, mixed boundary value problem, generalized solution, operator equation, a priori estimate
Mots-clés : Sobolev spaces
@article{SVMO_2023_25_3_a2,
     author = {F. V. Lubyshev and A. M. Bolotnov and M. \`E. Fairuzov},
     title = {Mathematical models of joint calculation of electric and thermal fields in electrochemical systems (in electrolytes)},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {150--158},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2023_25_3_a2/}
}
TY  - JOUR
AU  - F. V. Lubyshev
AU  - A. M. Bolotnov
AU  - M. È. Fairuzov
TI  - Mathematical models of joint calculation of electric and thermal fields in electrochemical systems (in electrolytes)
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2023
SP  - 150
EP  - 158
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2023_25_3_a2/
LA  - ru
ID  - SVMO_2023_25_3_a2
ER  - 
%0 Journal Article
%A F. V. Lubyshev
%A A. M. Bolotnov
%A M. È. Fairuzov
%T Mathematical models of joint calculation of electric and thermal fields in electrochemical systems (in electrolytes)
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2023
%P 150-158
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2023_25_3_a2/
%G ru
%F SVMO_2023_25_3_a2
F. V. Lubyshev; A. M. Bolotnov; M. È. Fairuzov. Mathematical models of joint calculation of electric and thermal fields in electrochemical systems (in electrolytes). Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 25 (2023) no. 3, pp. 150-158. http://geodesic.mathdoc.fr/item/SVMO_2023_25_3_a2/

[1] N. P. Savenkova, S. V. Anpilov, R. N. Kuzmin, O. G. Provorova, T. V. Piskazhova, “Dvukhfaznaya trekhmernaya model alyuminievogo elektrolizera”, Prikladnaya fizika, 2012, no. 3, 111–115 | MR

[2] N. P. Savenkova, A. Yu. Mokin, N. S. Udovichenko, A. A. Pyanykh, “Matematicheskoe modelirovanie MGD-stabilnosti alyuminievogo elektrolizera”, Zhurnal Sibirskogo federalnogo universiteta. Seriya: Tekhnika i tekhnologii, 13:2 (2020), 243–253

[3] V. R. Mukaeva, E. V. Parfenov, “Matematicheskoe modelirovanie protsessa elektrolitno-plazmennogo polirovaniya”, Vestnik UGATU, 16:6 (2012), 67–73

[4] A. G. Rakoch, V. V. Khokhlov, V. A. Bautin, N. A. Lebedeva, Yu. V. Magurova, I. V. Bardin, “Modelnye predstavleniya o mekhanizme mikrodugovogo oksidirovaniya metallicheskikh materialov i upravlenie etim protsessom”, Zaschita metallov, 42:2 (2006), 173–184

[5] V. T. Ivanov, F. V. Lubyshev, A. S. Derkach, V. S. Merkurev, Metody sovmestnykh raschetov elektricheskikh i teplovykh polei v elektrokhimicheskikh sistemakh, Nauka, M., 1978, 104 pp.

[6] A. A. Samarskii, L. D. Lazarov, V. L. Makarov, Raznostnye skhemy dlya differentsialnykh uravnenii s obobschennymi resheniyami, Vysshaya shkola. M., 1987, 296 pp.

[7] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973, 408 pp.

[8] A. A. Samarskii, P. N. Vabischevich, Vychislitelnaya teploperedacha, URSS, M., 2009, 784 pp.

[9] Francu Jan, “Monotone operators. A survey directed to applications to differential equations”, Aplikace Matematiky, 35:4 (1990), 257–301 | MR | Zbl