Generalised Wang's graph for Morse flows on surfaces
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 25 (2023) no. 3, pp. 123-149.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to gradient-like flows on surfaces, which are Morse-Smale flows without limit cycles, and to their topological classification up to topological conjugacy. Such flows, otherwise called Morse flows, have been repeatedly classified by means of various topological invariants. One of these invariants is the two-colour Wang's graph, which is valid only for gradient-like flows on orientable surfaces. The purpose of this study was to generalize the Wang's graph to the case of arbitrary closed surfaces. A new invariant, the generalized Wang's graph, is introduced in the paper. Using this generalization, a topological classification of gradient-like flows on arbitrary surfaces is obtained, including a non-orientable case. The realization of the generalized Wang's graph by the standard Morse flow on the surface is performed as well. To obtain all the results, constructive method is used: to prove the classification theorem, a homeomorphism is constructed that maps regions with the same behavior of trajectories into each other, and the graph allows to establish the correct location of such regions relative to each other. The realization theorem is also proven constructively: basing on the graph being considered, standard flow is created that is topologically conjugated to every flow such that the graph corresponds to this flow. Thus, a complete topological classification of Morse flows on surfaces is constructed by means of an invariant, which in some respects surpasses in simplicity and practicality both the directed Peixoto graph and the three-colour Oshemkov-Sharko graph.
Keywords: gradient-like flow, Morse flow, topological classification, Wang’s graph, surface flow
@article{SVMO_2023_25_3_a1,
     author = {V. E. Kruglov and M. S. Rekshinskiy},
     title = {Generalised {Wang's} graph for {Morse} flows on surfaces},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {123--149},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2023_25_3_a1/}
}
TY  - JOUR
AU  - V. E. Kruglov
AU  - M. S. Rekshinskiy
TI  - Generalised Wang's graph for Morse flows on surfaces
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2023
SP  - 123
EP  - 149
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2023_25_3_a1/
LA  - ru
ID  - SVMO_2023_25_3_a1
ER  - 
%0 Journal Article
%A V. E. Kruglov
%A M. S. Rekshinskiy
%T Generalised Wang's graph for Morse flows on surfaces
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2023
%P 123-149
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2023_25_3_a1/
%G ru
%F SVMO_2023_25_3_a1
V. E. Kruglov; M. S. Rekshinskiy. Generalised Wang's graph for Morse flows on surfaces. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 25 (2023) no. 3, pp. 123-149. http://geodesic.mathdoc.fr/item/SVMO_2023_25_3_a1/

[1] Andronov A. A., Pontryagin L. S., “Gpubye sistemy”, Doklady AN SSSP, 14:5 (1937), 247–250 | Zbl

[2] S. Smeil, “Differentsiruemye dinamicheskie sistemy”, UMN, 25 (1970), 113–185 | MR

[3] E. A. Leontovich, A. G. Maier, “O traektoriyakh, opredelyayuschikh kachestvennuyu strukturu razbieniya sfery na traektorii”, Doklady AN SSSP, 14:5 (1937), 251–257

[4] E. A. Leontovich, A. G. Maier, “O skheme, opredelyayuschei topologicheskuyu strukturu razbieniya na traektorii”, Doklady AN SSSP, 103:4 (1955), 557–560 | Zbl

[5] Peixoto M. M., “On the classification of flows on 2-manifolds”, Dynamical Systems Proc., Academic Press, New York, 1973, 389-419 | MR | Zbl

[6] Wang X., “The C*-algebras of Morse-Smale flows on two-manifolds”, Ergodic Theory Dynam. Systems, 10 (1990), 565-597 | DOI | MR | Zbl

[7] Grines V. Z., Gurevich E. Ya., Zhuzhoma E. V., Pochinka O. V., “Klassifikatsiya sistem Morsa–Smeila i topologicheskaya struktura nesuschikh mnogoobrazii”, Uspekhi matematicheskikh nauk, 74:1(445) (2019), 41-116 | DOI | MR | Zbl

[8] Nikolaev I., Zhuzhoma E., “Flows on 2-dimensional manifolds”, Lect. Notes in Math., 1705 (1999) | DOI | MR | Zbl

[9] Robinson C., Dynamical systems: stability, symbolic dynamics, and chaos, Tokyo CRC Press, London, 1995 | MR

[10] Kruglov V., “Topological conjugacy of gradient-like flows on surfaces”, Dinamicheskie sistemy, 8:1 (2018), 15-21 | Zbl

[11] V. E. Kruglov, D. S. Malyshev, O. V. Pochinka, “On Algorithms that Effectively Distinguish Gradient-Like Dynamics on Surfaces”, Arnold Mathematical Journal, 4 (2018), 483-504 | DOI | MR | Zbl

[12] Zh. Palis, V. Di Melu, Geometricheskaya teoriya dinamicheskikh sistem: Vvedenie, Mir., M., 1986, 301 pp.

[13] V. E. Kruglov, D. S. Malyshev, O. V. Pochinka, “Mnogotsvetnyi graf kak polnyi topologicheskii invariant dlya $\Omega$-ustoichivykh potokov bez periodicheskikh traektorii na poverkhnostyakh”, Matem. sb., 209:1 (2018), 100–126 | DOI | MR | Zbl

[14] Oshemkov A. A., Sharko V. V., “O klassifikatsii potokov Morsa–Smeila na dvumernykh mnogoobraziyakh”, Matematicheskii sbornik, 189:8 (1998), 93-140 | DOI | Zbl