Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2023_25_3_a1, author = {V. E. Kruglov and M. S. Rekshinskiy}, title = {Generalised {Wang's} graph for {Morse} flows on surfaces}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {123--149}, publisher = {mathdoc}, volume = {25}, number = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2023_25_3_a1/} }
TY - JOUR AU - V. E. Kruglov AU - M. S. Rekshinskiy TI - Generalised Wang's graph for Morse flows on surfaces JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2023 SP - 123 EP - 149 VL - 25 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2023_25_3_a1/ LA - ru ID - SVMO_2023_25_3_a1 ER -
V. E. Kruglov; M. S. Rekshinskiy. Generalised Wang's graph for Morse flows on surfaces. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 25 (2023) no. 3, pp. 123-149. http://geodesic.mathdoc.fr/item/SVMO_2023_25_3_a1/
[1] Andronov A. A., Pontryagin L. S., “Gpubye sistemy”, Doklady AN SSSP, 14:5 (1937), 247–250 | Zbl
[2] S. Smeil, “Differentsiruemye dinamicheskie sistemy”, UMN, 25 (1970), 113–185 | MR
[3] E. A. Leontovich, A. G. Maier, “O traektoriyakh, opredelyayuschikh kachestvennuyu strukturu razbieniya sfery na traektorii”, Doklady AN SSSP, 14:5 (1937), 251–257
[4] E. A. Leontovich, A. G. Maier, “O skheme, opredelyayuschei topologicheskuyu strukturu razbieniya na traektorii”, Doklady AN SSSP, 103:4 (1955), 557–560 | Zbl
[5] Peixoto M. M., “On the classification of flows on 2-manifolds”, Dynamical Systems Proc., Academic Press, New York, 1973, 389-419 | MR | Zbl
[6] Wang X., “The C*-algebras of Morse-Smale flows on two-manifolds”, Ergodic Theory Dynam. Systems, 10 (1990), 565-597 | DOI | MR | Zbl
[7] Grines V. Z., Gurevich E. Ya., Zhuzhoma E. V., Pochinka O. V., “Klassifikatsiya sistem Morsa–Smeila i topologicheskaya struktura nesuschikh mnogoobrazii”, Uspekhi matematicheskikh nauk, 74:1(445) (2019), 41-116 | DOI | MR | Zbl
[8] Nikolaev I., Zhuzhoma E., “Flows on 2-dimensional manifolds”, Lect. Notes in Math., 1705 (1999) | DOI | MR | Zbl
[9] Robinson C., Dynamical systems: stability, symbolic dynamics, and chaos, Tokyo CRC Press, London, 1995 | MR
[10] Kruglov V., “Topological conjugacy of gradient-like flows on surfaces”, Dinamicheskie sistemy, 8:1 (2018), 15-21 | Zbl
[11] V. E. Kruglov, D. S. Malyshev, O. V. Pochinka, “On Algorithms that Effectively Distinguish Gradient-Like Dynamics on Surfaces”, Arnold Mathematical Journal, 4 (2018), 483-504 | DOI | MR | Zbl
[12] Zh. Palis, V. Di Melu, Geometricheskaya teoriya dinamicheskikh sistem: Vvedenie, Mir., M., 1986, 301 pp.
[13] V. E. Kruglov, D. S. Malyshev, O. V. Pochinka, “Mnogotsvetnyi graf kak polnyi topologicheskii invariant dlya $\Omega$-ustoichivykh potokov bez periodicheskikh traektorii na poverkhnostyakh”, Matem. sb., 209:1 (2018), 100–126 | DOI | MR | Zbl
[14] Oshemkov A. A., Sharko V. V., “O klassifikatsii potokov Morsa–Smeila na dvumernykh mnogoobraziyakh”, Matematicheskii sbornik, 189:8 (1998), 93-140 | DOI | Zbl