On the reduction of the topological classification of gradient-like flows problem to the classification of polar flows
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 25 (2023) no. 2, pp. 62-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider a class $G(M^n)$ of gradient-like flows on connected closed manifolds of dimension $n\geq 4$ such that for any flow $f^t \in G(M^n)$ stable and unstable invariant manifolds of saddle equilibria do not intersect invariant manifolds of other saddle equilibria. It is known that the ambient manifold of any flow from the class $G(M^n)$ can be splitted into connected summ of the sphere $\mathbb{S}^n$, $g_{f^t} \geq 0$ copies of direct products $\mathbb{S}^{n-1} \times \mathbb{S}^1$, and a simply connected manifold which is not homeomorphic to the sphere. The number $g_{f^t}$ is determined only by the number of nodal equilibria and the number of saddle equilibria such that one of their invariant manifolds has the dimension $(n-1)$ (we call such equilibria trivial saddles). A simply connected manifold which is not homeomorphic to the sphere presents in the splitting if and only if the set of saddle equilibria contains points with unstable manifolds of dimension $i \in \{2,\dots,n-2\}$ (we call such equilibria non-trivial saddles). Moreover, the complete topological classification was obtained for flows from the class $G(M^n)$ without non-trivial saddles. In this paper we prove that for any flow $f^t\in G(M^n)$ the carrier manifold can be splitted into a connected sum along pairwise disjoint smoothly embedded spheres (separating spheres) that do not contain equilibrium states of the flow $f^t$ and transversally intersect its trajectories. The restriction of the flow $f^t$ to the complements to these spheres uniquely (up to topological equivalence and numbering) defines a finite set of flows $f^t_1, \dots, f^t_l$ defined on the components of a connected sum. Moreover, for any $j\in 1, \dots, l$, the set of saddle equilibria of the flow $f^t_j$ consists either only of trivial saddles or only of of non-trivial ones and then the flow $f^t_j$ is polar. We introduce the notion of consistent topological equivalence for flows $f^t_1,\dots f^t_j$ and show that flows $f^t, {f'}^t\in G(M^n)$ are topologically equivalent if and only if for each of these flows the set of separating spheres exists that defines consistently topologically equivalent flows on the components of the connected sum.
Keywords: gradient-like flows, manifold, topological classification, Morse-Smale flows, Morse function
@article{SVMO_2023_25_2_a4,
     author = {I. A. Saraev},
     title = {On the reduction of the topological classification of gradient-like flows problem to the classification of polar flows},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {62--75},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2023_25_2_a4/}
}
TY  - JOUR
AU  - I. A. Saraev
TI  - On the reduction of the topological classification of gradient-like flows problem to the classification of polar flows
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2023
SP  - 62
EP  - 75
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2023_25_2_a4/
LA  - ru
ID  - SVMO_2023_25_2_a4
ER  - 
%0 Journal Article
%A I. A. Saraev
%T On the reduction of the topological classification of gradient-like flows problem to the classification of polar flows
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2023
%P 62-75
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2023_25_2_a4/
%G ru
%F SVMO_2023_25_2_a4
I. A. Saraev. On the reduction of the topological classification of gradient-like flows problem to the classification of polar flows. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 25 (2023) no. 2, pp. 62-75. http://geodesic.mathdoc.fr/item/SVMO_2023_25_2_a4/

[1] Bonatti Ch., V. Z. Grines, V. S. Medvedev, Pecou E., “Three-manifolds admitting Morse–Smale diffeomorphisms without heteroclinic curves”, Topology and its Applications., 208.:1 (2002), 81-91 | MR

[2] V. Z. Grines, E. Ya. Gurevich, O.V.Pochinka, “Topological classification of Morse–Smale diffeomorphisms without heteroclinic”, Journal of Mathematical Sciences, 2015 | MR

[3] Grines V. Z., Zhuzhoma E. V., Medvedev V. S., “O strukture nesuschego mnogoobraziya dlya sistem Morsa-Smeila bez geteroklinicheskikh peresechenii”, Trudy matematicheskogo instituta imeni V.A. Steklova., 297:1 (2017), 201–210 | DOI | MR | Zbl

[4] Grines V. Z., Gurevich E. Ya., “Indeks Morsa sedlovykh sostoyanii ravnovesiya gradientno-podobnykh potokov na svyaznoi”, Matematicheskie zametki, 111:4 (2022), 616-619. | DOI | Zbl

[5] Grines V. Z., Gurevich E. Ya., “Kombinatornyi invariant gradientno-podobnykh potokov na”, Matematicheskii sbornik, 2023, v pechati

[6] Grines V. Z., Gurevich E.Ya., “Topologicheskaya klassifikatsiya potokov bez geteroklinicheskikh traektorii na svyaznoi”, Uspekhi matematicheskikh nauk, 77:4(466) (2022), 201–202 | DOI | MR

[7] Kervaire M. A., Milnor J. W., “Groups of homotopy spheres. I”, Ann. of Math., 77:2 (1963), 504–537 | DOI | MR | Zbl

[8] Milnor J.W., “A unique decomposition theorem for 3-manifolds”, Amer. J. Math, 84 (1962), 1–7 | DOI | MR | Zbl

[9] R. Mandelbaum, perevod s angliiskogo O.Ya. Viro., Chetyrekhmernaya topologiya, Izdatelstvo «MIR», 1981, 278 pp.

[10] Medvedev V. S., Umanskii Ya. L., “O razlozhenii $n$-mnogoobrazii na prostye mnogoobraziya”, Izvestiya Vysshikh Uchebnykh zavedenii, 1 (1979), 46–50 | Zbl

[11] Smeil S., “Differentsiruemye dinamicheskie sistemy”, UMN., 25 (1970), 113–185 | MR

[12] Smale S., “On gradient dynamical systems”, Annals of Mathematics., 74 (1961), 199–206 | DOI | MR | Zbl

[13] Meyer K. R., “Energy functions for Morse-Smale systems”, Amer. J. Math., 90 (1968), 1031–1040 | DOI | MR | Zbl

[14] Grines V. Z., Gurevich E.Ya., Problemy topologicheskoi klassifikatsii mnogomernykh sistem Morsa – Smeila, Institut kompyuternykh issledovanii, M.–Izhevsk, 2022, 292 pp. | MR

[15] Palis Zh., Di Melu V., “Geometricheskaya teoriya dinamicheskikh sistem. Vvedenie.”, M.:Mir., 1986

[16] R. Gompf, A. Shtipshits, Chetyrekhmernye mnogoobraziya i ischislenie Kirbi, M.: MTsNMO., 2013, 624 pp.

[17] S. P. Novikov, I. A. Taimanov, Sovremennye geometricheskie struktury i polya, MTsNMO, Moskva, 2014, 584 pp.

[18] Grines V. Z., Gurevich E. Ya., “O klassifikatsii potokov Morsa–Smeila na proektivno-podobnykh mnogoobraziyakh”, Izvestiya RAN. Seriya matematicheskaya., 86:5 (2022), 43-72. | DOI | MR