Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2023_25_2_a4, author = {I. A. Saraev}, title = {On the reduction of the topological classification of gradient-like flows problem to the classification of polar flows}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {62--75}, publisher = {mathdoc}, volume = {25}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2023_25_2_a4/} }
TY - JOUR AU - I. A. Saraev TI - On the reduction of the topological classification of gradient-like flows problem to the classification of polar flows JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2023 SP - 62 EP - 75 VL - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2023_25_2_a4/ LA - ru ID - SVMO_2023_25_2_a4 ER -
%0 Journal Article %A I. A. Saraev %T On the reduction of the topological classification of gradient-like flows problem to the classification of polar flows %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2023 %P 62-75 %V 25 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2023_25_2_a4/ %G ru %F SVMO_2023_25_2_a4
I. A. Saraev. On the reduction of the topological classification of gradient-like flows problem to the classification of polar flows. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 25 (2023) no. 2, pp. 62-75. http://geodesic.mathdoc.fr/item/SVMO_2023_25_2_a4/
[1] Bonatti Ch., V. Z. Grines, V. S. Medvedev, Pecou E., “Three-manifolds admitting Morse–Smale diffeomorphisms without heteroclinic curves”, Topology and its Applications., 208.:1 (2002), 81-91 | MR
[2] V. Z. Grines, E. Ya. Gurevich, O.V.Pochinka, “Topological classification of Morse–Smale diffeomorphisms without heteroclinic”, Journal of Mathematical Sciences, 2015 | MR
[3] Grines V. Z., Zhuzhoma E. V., Medvedev V. S., “O strukture nesuschego mnogoobraziya dlya sistem Morsa-Smeila bez geteroklinicheskikh peresechenii”, Trudy matematicheskogo instituta imeni V.A. Steklova., 297:1 (2017), 201–210 | DOI | MR | Zbl
[4] Grines V. Z., Gurevich E. Ya., “Indeks Morsa sedlovykh sostoyanii ravnovesiya gradientno-podobnykh potokov na svyaznoi”, Matematicheskie zametki, 111:4 (2022), 616-619. | DOI | Zbl
[5] Grines V. Z., Gurevich E. Ya., “Kombinatornyi invariant gradientno-podobnykh potokov na”, Matematicheskii sbornik, 2023, v pechati
[6] Grines V. Z., Gurevich E.Ya., “Topologicheskaya klassifikatsiya potokov bez geteroklinicheskikh traektorii na svyaznoi”, Uspekhi matematicheskikh nauk, 77:4(466) (2022), 201–202 | DOI | MR
[7] Kervaire M. A., Milnor J. W., “Groups of homotopy spheres. I”, Ann. of Math., 77:2 (1963), 504–537 | DOI | MR | Zbl
[8] Milnor J.W., “A unique decomposition theorem for 3-manifolds”, Amer. J. Math, 84 (1962), 1–7 | DOI | MR | Zbl
[9] R. Mandelbaum, perevod s angliiskogo O.Ya. Viro., Chetyrekhmernaya topologiya, Izdatelstvo «MIR», 1981, 278 pp.
[10] Medvedev V. S., Umanskii Ya. L., “O razlozhenii $n$-mnogoobrazii na prostye mnogoobraziya”, Izvestiya Vysshikh Uchebnykh zavedenii, 1 (1979), 46–50 | Zbl
[11] Smeil S., “Differentsiruemye dinamicheskie sistemy”, UMN., 25 (1970), 113–185 | MR
[12] Smale S., “On gradient dynamical systems”, Annals of Mathematics., 74 (1961), 199–206 | DOI | MR | Zbl
[13] Meyer K. R., “Energy functions for Morse-Smale systems”, Amer. J. Math., 90 (1968), 1031–1040 | DOI | MR | Zbl
[14] Grines V. Z., Gurevich E.Ya., Problemy topologicheskoi klassifikatsii mnogomernykh sistem Morsa – Smeila, Institut kompyuternykh issledovanii, M.–Izhevsk, 2022, 292 pp. | MR
[15] Palis Zh., Di Melu V., “Geometricheskaya teoriya dinamicheskikh sistem. Vvedenie.”, M.:Mir., 1986
[16] R. Gompf, A. Shtipshits, Chetyrekhmernye mnogoobraziya i ischislenie Kirbi, M.: MTsNMO., 2013, 624 pp.
[17] S. P. Novikov, I. A. Taimanov, Sovremennye geometricheskie struktury i polya, MTsNMO, Moskva, 2014, 584 pp.
[18] Grines V. Z., Gurevich E. Ya., “O klassifikatsii potokov Morsa–Smeila na proektivno-podobnykh mnogoobraziyakh”, Izvestiya RAN. Seriya matematicheskaya., 86:5 (2022), 43-72. | DOI | MR