Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2023_25_2_a3, author = {S. I. Martynov}, title = {Anisotropic transport of dielectric particles by a uniform electric field in an inhomogeneously heated viscous fluid}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {53--61}, publisher = {mathdoc}, volume = {25}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2023_25_2_a3/} }
TY - JOUR AU - S. I. Martynov TI - Anisotropic transport of dielectric particles by a uniform electric field in an inhomogeneously heated viscous fluid JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2023 SP - 53 EP - 61 VL - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2023_25_2_a3/ LA - ru ID - SVMO_2023_25_2_a3 ER -
%0 Journal Article %A S. I. Martynov %T Anisotropic transport of dielectric particles by a uniform electric field in an inhomogeneously heated viscous fluid %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2023 %P 53-61 %V 25 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2023_25_2_a3/ %G ru %F SVMO_2023_25_2_a3
S. I. Martynov. Anisotropic transport of dielectric particles by a uniform electric field in an inhomogeneously heated viscous fluid. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 25 (2023) no. 2, pp. 53-61. http://geodesic.mathdoc.fr/item/SVMO_2023_25_2_a3/
[1] G. Gharib, I. Butun, Z. Muganli, G. Kozalak, I. Namli, S. Sarraf, V. Ahmadi, E. Toyran, A. Van Wijnen, A. Kosar, “Biomedical Applications of Microfluidic Devices: A Review”, Biosensors, 12:11 (2022) | DOI
[2] H.A. Pohl, Dielectrophoresis: the behavior of neutral matter in nonuniform electric fields, Cambridge University Press, Cambridge, 1978, 720 pp.
[3] T.B. Jones, Electromechnics of particles, Cambridge University Press, Cambridge, 1996, 285 pp.
[4] L. Shi, X. Zhong, H. Ding, , Zh. Yu, J. Jin, T. Zhou, Y. Zhu, Zh. Liu, “Continuous separation of microparticles based on optically induced dielectrophoresis”, Microfluidics and Nanofluidics, 26:6 (2022) | DOI | MR
[5] S. Valijam, A. Salehi, M. Andersson, “Design of a low-voltage dielectrophoresis lab-on-the chip to separate tumor and blood cells”, Microfluidics and Nanofluidics, 27:22 (2023) | DOI
[6] Y. Bu, J. Wang, S. Ni, Yu. Guob, L. Yobas, “Continuous-flow label-free size fractionation of extracellular vesicles through electrothermal fluid rolls and dielectrophoresis synergistically integrated in a microfluidic device”, Lab Chip, 23 (2023), 2421-2433 | DOI
[7] S. I. Martynov, “Opredelenie srednei elektro-termoforeticheskoi sily, deistvuyuschei na sistemu polyarizuyuschikhsya chastits v neodnorodno nagretoi zhidkosti”, Zhurnal SVMO, 24:2 (2022), 185-199 | DOI | MR | Zbl
[8] I. P. Boriskina, A. O. Syromyasov, “Parnoe magnitogidrodinamicheskoe vzaimodeistvie tverdykh sfer v medlennom prodolnom potoke vyazkoi zhidkosti”, Zhurnal SVMO, 21:1 (2019), 78-88 | DOI | Zbl
[9] S. I. Martynov, “Gidrodinamicheskoe vzaimodeistvie chastits”, Izv. RAN. Mekhanika zhidkosti i gaza, 1998, no. 2, 112–119 | Zbl