Anisotropic transport of dielectric particles by a uniform electric field in an inhomogeneously heated viscous fluid
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 25 (2023) no. 2, pp. 53-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

The anisotropic transfer of dielectric particles by a uniform electric field in a nonuniformly heated fluid is modeled. The transport anisotropy is determined by the mechanism of interaction between particles whose permittivity depends on temperature. The temperature distribution in the particles and in the fluid is determined by their thermal diffusivity and does not depend on the motion of the fluid, thus corresponding to small Peclet numbers. The fluid flow is considered in the approximation of small Reynolds numbers. The transfer of particles is due to the action of an anisotropic force exerted by applied uniform electric field and friction forces exerted by the fluid. The interaction of particles is taken into account. Numerical modeling of anisotropic transport dynamics of two dielectric particles is carried out. The process mentioned depends on the mutual orientation of electric field vector, temperature gradient, and initial orientation of the vector connecting the particle centers. For the case of a large number of particles, an anisotropic equilibrium distribution of the particle concentration in an external electric field is found taking into account the mechanisms of their diffusion and interaction.
Mots-clés : dielectric particles
Keywords: electric field, temperature gradient, interaction, displacement anisotropy
@article{SVMO_2023_25_2_a3,
     author = {S. I. Martynov},
     title = {Anisotropic transport of dielectric particles by a uniform electric field in an inhomogeneously heated viscous fluid},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {53--61},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2023_25_2_a3/}
}
TY  - JOUR
AU  - S. I. Martynov
TI  - Anisotropic transport of dielectric particles by a uniform electric field in an inhomogeneously heated viscous fluid
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2023
SP  - 53
EP  - 61
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2023_25_2_a3/
LA  - ru
ID  - SVMO_2023_25_2_a3
ER  - 
%0 Journal Article
%A S. I. Martynov
%T Anisotropic transport of dielectric particles by a uniform electric field in an inhomogeneously heated viscous fluid
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2023
%P 53-61
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2023_25_2_a3/
%G ru
%F SVMO_2023_25_2_a3
S. I. Martynov. Anisotropic transport of dielectric particles by a uniform electric field in an inhomogeneously heated viscous fluid. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 25 (2023) no. 2, pp. 53-61. http://geodesic.mathdoc.fr/item/SVMO_2023_25_2_a3/

[1] G. Gharib, I. Butun, Z. Muganli, G. Kozalak, I. Namli, S. Sarraf, V. Ahmadi, E. Toyran, A. Van Wijnen, A. Kosar, “Biomedical Applications of Microfluidic Devices: A Review”, Biosensors, 12:11 (2022) | DOI

[2] H.A. Pohl, Dielectrophoresis: the behavior of neutral matter in nonuniform electric fields, Cambridge University Press, Cambridge, 1978, 720 pp.

[3] T.B. Jones, Electromechnics of particles, Cambridge University Press, Cambridge, 1996, 285 pp.

[4] L. Shi, X. Zhong, H. Ding, , Zh. Yu, J. Jin, T. Zhou, Y. Zhu, Zh. Liu, “Continuous separation of microparticles based on optically induced dielectrophoresis”, Microfluidics and Nanofluidics, 26:6 (2022) | DOI | MR

[5] S. Valijam, A. Salehi, M. Andersson, “Design of a low-voltage dielectrophoresis lab-on-the chip to separate tumor and blood cells”, Microfluidics and Nanofluidics, 27:22 (2023) | DOI

[6] Y. Bu, J. Wang, S. Ni, Yu. Guob, L. Yobas, “Continuous-flow label-free size fractionation of extracellular vesicles through electrothermal fluid rolls and dielectrophoresis synergistically integrated in a microfluidic device”, Lab Chip, 23 (2023), 2421-2433 | DOI

[7] S. I. Martynov, “Opredelenie srednei elektro-termoforeticheskoi sily, deistvuyuschei na sistemu polyarizuyuschikhsya chastits v neodnorodno nagretoi zhidkosti”, Zhurnal SVMO, 24:2 (2022), 185-199 | DOI | MR | Zbl

[8] I. P. Boriskina, A. O. Syromyasov, “Parnoe magnitogidrodinamicheskoe vzaimodeistvie tverdykh sfer v medlennom prodolnom potoke vyazkoi zhidkosti”, Zhurnal SVMO, 21:1 (2019), 78-88 | DOI | Zbl

[9] S. I. Martynov, “Gidrodinamicheskoe vzaimodeistvie chastits”, Izv. RAN. Mekhanika zhidkosti i gaza, 1998, no. 2, 112–119 | Zbl