Bicolor graph of Morse-Smale cascades on manifolds of dimension three
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 25 (2023) no. 2, pp. 37-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this study is to single out a class of Morse-Smale cascades (diffeomorphisms) with a three-dimensional phase space that allow a topological classification using combinatorial invariants. In the general case, an obstacle to such a classification is the possibility of wild embedding of separatrix closures in the ambient manifold, which leads to a countable set of topologically nonequivalent systems. To solve the problem, we study the orbit space of a cascade. The ambient manifold of a diffeomorphism can be represented as a union of three pairwise disjoint sets: a connected attractor and a repeller whose dimension does not exceed one, and their complement consisting of wandering points of a cascade called the characteristic set. It is known that the topology of the orbit space of the restriction of the Morse-Smale diffeomorphism to the characteristic set and the embedding of the projections of two-dimensional separatrices into it is a complete topological invariant for Morse-Smale cascades on three-dimensional manifolds. Moreover, a criterion for the inclusion of Morse-Smale cascades in the topological flow was obtained earlier. These results are used in this paper to show that the topological conjugacy classes of Morse-Smale cascades that are included in a topological flow and do not have heteroclinic curves admit a combinatorial description. More exactly, the class of Morse-Smale diffeomorphisms without heteroclinic intersections, defined on closed three-dimensional manifolds included in topological flows and not having heteroclinic curves, is considered. Each cascade from this class is associated with a two-color graph describing the mutual arrangement of two-dimensional separatrices of saddle periodic points. It is proved that the existence of an isomorphism of two-color graphs that preserves the color of edges is a necessary and sufficient condition for the topological conjugacy of cascades. It is shown that the speed of the algorithm that distinguishes two-color graphs depends polynomially on the number of its vertices. An algorithm for constructing a representative of each topological conjugacy class is described.
Keywords: Morse-Smale diffeomorphisms, topological classification, structurally stable diffeomorphisms, be-color graph, topological conjugacy
@article{SVMO_2023_25_2_a2,
     author = {E. Ya. Gurevich and E. K. Rodionova},
     title = {Bicolor graph of {Morse-Smale} cascades on manifolds of dimension three},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {37--52},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2023_25_2_a2/}
}
TY  - JOUR
AU  - E. Ya. Gurevich
AU  - E. K. Rodionova
TI  - Bicolor graph of Morse-Smale cascades on manifolds of dimension three
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2023
SP  - 37
EP  - 52
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2023_25_2_a2/
LA  - ru
ID  - SVMO_2023_25_2_a2
ER  - 
%0 Journal Article
%A E. Ya. Gurevich
%A E. K. Rodionova
%T Bicolor graph of Morse-Smale cascades on manifolds of dimension three
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2023
%P 37-52
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2023_25_2_a2/
%G ru
%F SVMO_2023_25_2_a2
E. Ya. Gurevich; E. K. Rodionova. Bicolor graph of Morse-Smale cascades on manifolds of dimension three. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 25 (2023) no. 2, pp. 37-52. http://geodesic.mathdoc.fr/item/SVMO_2023_25_2_a2/

[1] D. Pixton, “Wild unstable manifolds”, Topology, 1977, 167–172 | DOI | MR | Zbl

[2] V. Z. Grines, Ch. Bonatti, “Knots as topological invariant for gradient-like diffeomorphisms of the sphere $S^3$”, J. Dyn. Control Syst., 2000, 579–602 | MR | Zbl

[3] A.N. Bezdenezhnykh, V.Z. Grines, “Dinamicheskie svoistva i topologicheskaya klassifikatsiya gradientnopodobnykh diffeomorfizmov na dvumernykh mnogoobraziyakh. I, II”, Metody kachestvennoi teorii differentsialnykh uravnenii: sbornik trudov, 1987, 24–32, Gorkii: GGU | MR

[4] Bonatti Ch., Grines V., Medvedev V., Pecou E., “Topological classification of gradient-like diffeomorphisms on $3$-manifolds”, Topology, 43 (2004), 369–391 | DOI | MR | Zbl

[5] V. Z. Grines, Ch. Bonatti, “Knots as topological invariant for gradient-like diffeomorphisms of the sphere $S^3$”, J. Dyn. Control Syst., 2000, 579–602 | MR | Zbl

[6] Bonatti Ch., V. Z. Grines, V. S. Medvedev, Pecou E., “Three-manifolds admitting Morse–Smale diffeomorphisms without heteroclinic curves”, Topology and its Applications, 208 (2002), 81–91 | MR

[7] Kh. Bonatti, V. Z. Grines, O. V. Pochinka, “Klassifikatsiya diffeomorfizmov Morsa–Smeila s konechnym mnozhestvom geteroklinicheskikh orbit na 3-mnogoobraziyakh”, Differentsialnye uravneniya i dinamicheskie sistemy, Sbornik statei, Trudy MIAN, 250, Nauka, MAIK «Nauka/Interperiodika», M., 2005, 5–53 | MR | Zbl

[8] Bonatti Ch., Grines V.Z., Pochinka O.V., “Topological classification of Morse-Smale diffeomorphisms on 3-manifolds”, Duke Mathematical Journal., 2019, 2507–2558 | MR | Zbl

[9] Brouwer, L.E.J., “Uber Abbildung von Mannigfaltigkeiten. Mathematische Annalen.”, Math. Ann.71., 1911, 97–115 | DOI | MR

[10] Brown M., “A proof of the generalised Schoenflies theorem”, Bull. Amer. Math. Soc., 1960, 74–76 | DOI | MR | Zbl

[11] Brown M., “A proof of the generalised Schoenflies theorem”, Bull. Amer. Math. Soc., 1960, 74–76 | DOI | MR | Zbl

[12] Brown M., “Locally flat embeddings of topological manifolds”, Ann. of Math., 75(2) (1962.), 331–341 | DOI | MR | Zbl

[13] Grines V.Z., “Topologicheskaya klassifikatsiya diffeomorfizmov Morsa-Smeila s konechnym chislom geteroklinicheskikh traektorii na poverkhnostyakh”, Mat. zametki, 1993, 3–17 | Zbl

[14] Grines V. Z., Pochinka O. V., “Vvedenie v topologicheskuyu klassifikatsiyu diffeomorfizmov na mnogoobraziyakh razmernosti dva i tri”, Moskva–Izhevsk: NITs «Regulyarnaya i khaoticheskaya dinamika», Izhevskii institut kompyuternykh issledovanii, 2011

[15] Grines V.Z., Zhuzhoma E.V., Medvedev V.S., Pochinka O.V., “Globalnye attraktor i repeller diffeomorfizmov Morsa–Smeila”, Trudy Matematicheskogo instituta imeni VA Steklova, 2010, 111–113

[16] Grines V.Z., Gurevich E.Ya., Medvedev V.S., Pochinka O.V., “O vklyuchenii diffeomorfizmov Morsa–Smeila na 3-mnogoobrazii v topologicheskii potok”, Matematicheskii sbornik, 12 (2012), 81–104 | DOI | Zbl

[17] Grines V. Z., Gurevich E. Ya., “Kombinatornyi invariant gradientno-podobnykh potokov na svyaznoi summe $S^{n-1}\times S^1$”, Matematicheskii sbornik, 5 (2023), 97–127 | DOI

[18] Grines V.Z., Medvedev V.S., Pochinka O.V., “Dynamical Systems on 2- and 3-Manifolds”, Springer International Publishing, 2016, 295 pp. | MR

[19] Grines V., Malyshev D., Pochinka O., Zinina S., “Efficient algorithms for the recognition of topologically conjugate gradient-like diffeomorhisms”, Regular and Chaotic Dynamics, 2 (2016), 189–203 | DOI | MR | Zbl

[20] Grobman D.M., “Homeomorphisms of systems of differential equations”, Doklady Akademii Nauk SSSR, 1959, 880–881 | MR | Zbl

[21] Jordan C., “Sur les assemblages de lignes”, J. Reine Angew. Math., 1869, 185–190 | MR

[22] Miller G., “Isomorphism testing for graphs of bounded genus”, Symposium on the Theory of Computing, 1980, 225–235, Los Angeles.

[23] Palis J., De Melo Jr., Geometric Theory of Dynamical Systems. An Introduction, New York, 1982, 301 pp. | MR | Zbl

[24] Palis Zh., Di Melu V., “Geometricheskaya teoriya dinamicheskikh sistem. Vvedenie.”, M.:Mir., 1986

[25] Palis J., Smale S., “Structural stability Theorems. Proceedings of the Institute on Global Analysis”, American Math. Society., 14 (1970), 223–231 | MR | Zbl

[26] Pixton D., “Wild unstable manifolds”, Topology, 1977, 167–172 | DOI | MR | Zbl

[27] Rurk, K., Sanderson B., “Vvedenie v kusochno-lineinuyu topologiyu”, Mir, Moskva, 1974, 213 pp. | MR

[28] Smale S., “Morse inequalities for a dynamical system”, Bull. Am. Math. Soc., 1960, 43–49 | DOI | MR | Zbl

[29] J. Hopcroft, J. Wong, “Linear time algorithm for isomorphism of planar graphs”, Proceedings of the Sixth Annual ACM Symposium on Theory of Computing, 1974, 172–184 | DOI | MR | Zbl

[30] Khirsh M., Differentsialnaya topologiya, Moskva, 1979, 280 pp.