On global extrema of power Takagi functions
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 25 (2023) no. 2, pp. 22-36

Voir la notice de l'article provenant de la source Math-Net.Ru

By construction, power Takagi functions $S_p$ are similar to Takagi's continuous nowhere differentiable function described in 1903. These real-valued functions $S_p(x)$ have one real parameter $p > 0$. They are defined on the real axis $\mathbb R$ by the series $S_p(x)=\sum_{n=0}^\infty (S_0(2^nx)/2^n)^p$, where $S_0(x)$ is the distance from real number $x$ to the nearest integer number. We show that for every $p > 0$, the functions $S_p$ are everywhere continuous, but nowhere differentiable on $\mathbb R$. Next, we derive functional equations for Takagi power functions. With these, it is possible, in particular, to calculate the values $S_p(x)$ at rational points $x$. In addition, for all values of the parameter $p$ from the interval $(0;1)$, we find the global extrema of the functions $S_p$, as well as the points where they are reached. It turns out that the global maximum of $S_p$ equals to $2^p/(3^p(2^p-1))$ and is reached only at points $q+1/3$ and $q+2/3$, where $q$ is an arbitrary integer. The global minimum of the functions $S_p$ equals to $0$ and is reached only at integer points. Using the results on global extremes, we obtain two-sided estimates for the functions $S_p$ and find the points at which these estimates are reached.
Keywords: power Takagi function, continuity, nowhere differentiability, functional equations, global extrema
@article{SVMO_2023_25_2_a1,
     author = {O. E. Galkin and S. Yu. Galkina and A. A. Tronov},
     title = {On global extrema of power {Takagi} functions},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {22--36},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2023_25_2_a1/}
}
TY  - JOUR
AU  - O. E. Galkin
AU  - S. Yu. Galkina
AU  - A. A. Tronov
TI  - On global extrema of power Takagi functions
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2023
SP  - 22
EP  - 36
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2023_25_2_a1/
LA  - ru
ID  - SVMO_2023_25_2_a1
ER  - 
%0 Journal Article
%A O. E. Galkin
%A S. Yu. Galkina
%A A. A. Tronov
%T On global extrema of power Takagi functions
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2023
%P 22-36
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2023_25_2_a1/
%G ru
%F SVMO_2023_25_2_a1
O. E. Galkin; S. Yu. Galkina; A. A. Tronov. On global extrema of power Takagi functions. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 25 (2023) no. 2, pp. 22-36. http://geodesic.mathdoc.fr/item/SVMO_2023_25_2_a1/