On global extrema of power Takagi functions
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 25 (2023) no. 2, pp. 22-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

By construction, power Takagi functions $S_p$ are similar to Takagi's continuous nowhere differentiable function described in 1903. These real-valued functions $S_p(x)$ have one real parameter $p > 0$. They are defined on the real axis $\mathbb R$ by the series $S_p(x)=\sum_{n=0}^\infty (S_0(2^nx)/2^n)^p$, where $S_0(x)$ is the distance from real number $x$ to the nearest integer number. We show that for every $p > 0$, the functions $S_p$ are everywhere continuous, but nowhere differentiable on $\mathbb R$. Next, we derive functional equations for Takagi power functions. With these, it is possible, in particular, to calculate the values $S_p(x)$ at rational points $x$. In addition, for all values of the parameter $p$ from the interval $(0;1)$, we find the global extrema of the functions $S_p$, as well as the points where they are reached. It turns out that the global maximum of $S_p$ equals to $2^p/(3^p(2^p-1))$ and is reached only at points $q+1/3$ and $q+2/3$, where $q$ is an arbitrary integer. The global minimum of the functions $S_p$ equals to $0$ and is reached only at integer points. Using the results on global extremes, we obtain two-sided estimates for the functions $S_p$ and find the points at which these estimates are reached.
Keywords: power Takagi function, continuity, nowhere differentiability, functional equations, global extrema
@article{SVMO_2023_25_2_a1,
     author = {O. E. Galkin and S. Yu. Galkina and A. A. Tronov},
     title = {On global extrema of power {Takagi} functions},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {22--36},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2023_25_2_a1/}
}
TY  - JOUR
AU  - O. E. Galkin
AU  - S. Yu. Galkina
AU  - A. A. Tronov
TI  - On global extrema of power Takagi functions
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2023
SP  - 22
EP  - 36
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2023_25_2_a1/
LA  - ru
ID  - SVMO_2023_25_2_a1
ER  - 
%0 Journal Article
%A O. E. Galkin
%A S. Yu. Galkina
%A A. A. Tronov
%T On global extrema of power Takagi functions
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2023
%P 22-36
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2023_25_2_a1/
%G ru
%F SVMO_2023_25_2_a1
O. E. Galkin; S. Yu. Galkina; A. A. Tronov. On global extrema of power Takagi functions. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 25 (2023) no. 2, pp. 22-36. http://geodesic.mathdoc.fr/item/SVMO_2023_25_2_a1/

[1] Takagi T., “Tokyo Sugaku-Butsurigakkwai Hokoku”, Proc. Phys. Math. Soc. Japan., 1 (1901), 176–177 | DOI

[2] Medvedev F. A., Ocherki istorii teorii funktsii deistvitelnogo peremennogo, M. Nauka, 1975, 248 pp.

[3] Thim J., “Continuous nowhere differentiable functions. : Master's thesis”, Luleåuniversity of technology., 2003, Luleå, Sweden, 98 pp.

[4] Cater F.S., “Constructing nowhere differentiable functions from convex functions”, Real Anal. Exchange., 28:2 (2002/2003), 617–623 | DOI | MR

[5] Fujita Y., Hamamuki N., Siconolfi A., Yamaguchi N., “A class of nowhere differentiable functions satisfying some concavity-type estimate”, Acta Mathematica Hungarica., 160 (2020), 343–359 | DOI | MR | Zbl

[6] Allaart P. C., Kawamura K., “The Takagi function: a survey”, Real Anal. Exchange., 37:1 (2011/12), 1–54 | DOI | MR

[7] Kahane J.-P., “Sur l'exemple, donné par M. de Rham, d'une fonction continue sans dérivée”, Enseignement Math., 5 (1959), 53–57 | MR | Zbl

[8] Hata M., Yamaguti M., “Takagi function and its generalization”, Japan J. Appl. Math., 1 (1984), 183–199 | DOI | MR | Zbl

[9] Han X., Schied A., “Step roots of Littlewood polynomials and the extrema of functions in the Takagi class”, Math. Proc. of the Cambridge Phil. Soc., 173 (2022), 591–618 | DOI | MR | Zbl

[10] Galkin O.E., Galkina S.Yu., Functions consistent with real numbers, and global extrema of functions in exponential Takagi class, 2020 | MR

[11] Galkina S.Yu., “O koeffitsientakh Fure–Khaara ot funktsii s ogranichennoi variatsiei”, Matem. zametki., 51:1 (1992), 42–54 | MR | Zbl

[12] Tabor J., Tabor J., “Takagi functions and approximate midconvexity”, J. Math. Anal. Appl., 356:2 (2009), 729–737 | DOI | MR | Zbl

[13] Galkin O.E., Galkina S.Yu., “O svoistvakh funktsii pokazatelnogo klassa Takagi”, Ufimsk. matem. zhurn., 7:3 (2015), 29–38

[14] Tasaki S., Antoniou I., Suchanecki Z., “Deterministic diffusion, de Rham equation and fractal eigenvectors”, Physics Letter A., 179:2 (1993), 97–102 | DOI | MR

[15] Házy A., Páles Zs., “On approximately t-convex functions”, Publ. Math. Debrecen., 66:3–4 (2005), 489–501 | DOI | MR | Zbl

[16] Galkin O.E., Galkina S.Yu., “Globalnye ekstremumy funktsii Kobayashi–Greya–Takagi i dvoichnye tsifrovye summy”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki., 27:1 (2017), 17–25 | MR | Zbl

[17] Galkin O.E., Galkina S.Yu., “Globalnye ekstremumy funktsii Delanzha, otsenki tsifrovykh summ i vognutye funktsii”, Matem. sb., 211:3 (2020), 32–70 | DOI | MR | Zbl

[18] Galkin O.E., Galkina S.Yu., “Primenenie krainikh pod- i nadargumentov, vypuklykh i vognutykh obolochek dlya poiska globalnykh ekstremumov”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki., 29:4 (2019), 483–500 | MR | Zbl

[19] Rodríguez-Cuadrado J., San Martín J., “Sierpinski-Takagi combination for a uniform and optimal point-surface load transmission”, Appl. Math. Modelling., 105 (2022), 307–320 | DOI | MR | Zbl

[20] Fujita Y., Siconolfi A., Yamaguchi N., “Hamilton–Jacobi flows with nowhere differentiable initial data”, Mathematische Annalen., 385 (2023), 1061–1084 | DOI | MR