Energy function for direct products of discrete dynamical systems
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 25 (2023) no. 2, pp. 11-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the construction of an energy function, i.e. a smooth Lyapunov function, whose set of critical points coincides with the chain-recurrent set of a dynamical system — for a cascade that is a direct product of two systems. One of the multipliers is a structurally stable diffeomorphism given on a two-dimensional torus, whose non-wandering set consists of a zero-dimensional non-trivial basic set without pairs of conjugated points and without fixed source and sink, and the second one is an identical mapping on a real axis. It was previously proved that if a non-wandering set of a dynamical system contains a zero-dimensional basic set, as the diffeomorphism under consideration has, then such a system does not have an energy function, namely, any Lyapunov function will have critical points outside the chain-recurrent set. For an identical mapping, the energy function is a constant on the entire real line. In this paper, it is shown that the absence of an energy function for one of the multipliers is not a sufficient condition for the absence of such a function for the direct product of dynamical systems, that is, in some cases it is possible to select the second cascade in such a way that the direct product will have an energy function.
Keywords: direct product, diffeomorphism, chain recurrent set, energy function
@article{SVMO_2023_25_2_a0,
     author = {M. K. Barinova and E. K. Shustova},
     title = {Energy function for direct products of discrete dynamical systems},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {11--21},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2023_25_2_a0/}
}
TY  - JOUR
AU  - M. K. Barinova
AU  - E. K. Shustova
TI  - Energy function for direct products of discrete dynamical systems
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2023
SP  - 11
EP  - 21
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2023_25_2_a0/
LA  - ru
ID  - SVMO_2023_25_2_a0
ER  - 
%0 Journal Article
%A M. K. Barinova
%A E. K. Shustova
%T Energy function for direct products of discrete dynamical systems
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2023
%P 11-21
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2023_25_2_a0/
%G ru
%F SVMO_2023_25_2_a0
M. K. Barinova; E. K. Shustova. Energy function for direct products of discrete dynamical systems. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 25 (2023) no. 2, pp. 11-21. http://geodesic.mathdoc.fr/item/SVMO_2023_25_2_a0/

[1] C. Conley, “Isolated Invariant Sets and Morse Index”, Colorado:Am. Math. Soc, 1978, 89 | MR | Zbl

[2] K. Meyer, “Energy functions for Morse–Smale systems”, Amer. J. Math, 90:4 (1968), 1031–1040 | DOI | MR | Zbl

[3] S. Smale, “On gradient dynamical systems”, Annals Math, 74:1 (1961), 199–206 | DOI | MR | Zbl

[4] J. Franks, “Nonsingular Smale flow on S3”, Topology, 24:3 (1985), 265–282 | DOI | MR | Zbl

[5] M. Shub, “Morse-Smale diffeomorphism are unipotent on homology”, Dynamical Systems, 1973, 489-491 | MR | Zbl

[6] F. Takens, “Tolerance stability”, Dynamical Systems, 1974, 293-304 http://www.numdam.org/article/PMIHES_1987__66__161_0.pdf | MR

[7] V. Z. Grines,F. Laudenbach, O. V. Pochinka, “Dynamically ordered energy function for Morse-Smale diffeomorphisms on 3-manifolds”, Proceedings of the Steklov Institute of Mathematics, 278 (2012), 34-48 | DOI | MR | Zbl

[8] M. Barinova, V. Grines, O. Pochinka, B. Yu, “Existence of an energy function for three-dimensional chaotic “sink-source” cascades”, Chaos, 31:6 (2021) | DOI | MR | Zbl

[9] V. Z. Grines, M. K. Noskova, O. V. Pochinka, “Postroenie energeticheskoi funktsii dlya A-diffeomorfizmov s dvumernym nebluzhdayuschim mnozhestvom na 3-mnogoobraziyakh”, Zhurnal Srednevolzhskogo matematicheskogo obschestva, 17:3 (2015), 12–17 | Zbl

[10] D. Pixton, “Wild unstable manifolds”, Topology, 16:2 (1977), 167–172 | DOI | MR | Zbl

[11] M. Barinova, “On Existence of an Energy Function for Omega-stable Surface Diffeomorphisms”, Lobachevskii Journal of Mathematics, 42:141 (2021), 3317-3326 | DOI | MR

[12] Grines V., Pochinka O., “Postroenie energeticheskikh funktsii dlya omega-ustoichivykh diffeomorfizmov na 2- i 3-mnogoobraziyakh”, Sovremennaya matematika. Fundamentalnye napravleniya, 63:2 (2017), 191-222

[13] M. K. Barinova, E. K. Shustova, “Dinamicheskie svoistva pryamykh proizvedenii diskretnykh dinamicheskikh sistem”, Trudy SVMO, 24:1 (2022), 21-30 | Zbl

[14] S. Smale, “Differentiable dynamical systems”, Russian Mathematical Surveys, 25:1 (1970)