Energy function for direct products of discrete dynamical systems
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 25 (2023) no. 2, pp. 11-21

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the construction of an energy function, i.e. a smooth Lyapunov function, whose set of critical points coincides with the chain-recurrent set of a dynamical system — for a cascade that is a direct product of two systems. One of the multipliers is a structurally stable diffeomorphism given on a two-dimensional torus, whose non-wandering set consists of a zero-dimensional non-trivial basic set without pairs of conjugated points and without fixed source and sink, and the second one is an identical mapping on a real axis. It was previously proved that if a non-wandering set of a dynamical system contains a zero-dimensional basic set, as the diffeomorphism under consideration has, then such a system does not have an energy function, namely, any Lyapunov function will have critical points outside the chain-recurrent set. For an identical mapping, the energy function is a constant on the entire real line. In this paper, it is shown that the absence of an energy function for one of the multipliers is not a sufficient condition for the absence of such a function for the direct product of dynamical systems, that is, in some cases it is possible to select the second cascade in such a way that the direct product will have an energy function.
Keywords: direct product, diffeomorphism, chain recurrent set, energy function
@article{SVMO_2023_25_2_a0,
     author = {M. K. Barinova and E. K. Shustova},
     title = {Energy function for direct products of discrete dynamical systems},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {11--21},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2023_25_2_a0/}
}
TY  - JOUR
AU  - M. K. Barinova
AU  - E. K. Shustova
TI  - Energy function for direct products of discrete dynamical systems
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2023
SP  - 11
EP  - 21
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2023_25_2_a0/
LA  - ru
ID  - SVMO_2023_25_2_a0
ER  - 
%0 Journal Article
%A M. K. Barinova
%A E. K. Shustova
%T Energy function for direct products of discrete dynamical systems
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2023
%P 11-21
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2023_25_2_a0/
%G ru
%F SVMO_2023_25_2_a0
M. K. Barinova; E. K. Shustova. Energy function for direct products of discrete dynamical systems. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 25 (2023) no. 2, pp. 11-21. http://geodesic.mathdoc.fr/item/SVMO_2023_25_2_a0/