Methods of numerical analysis for some integral dynamical systems with delay arguments
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 25 (2023) no. 1, pp. 565-577.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this work is to construct direct and iterative numerical methods for solving functional equations with hereditary components. Such equations are a convenient tool for modeling dynamical systems. In particular, they are used in population models structured by age with a finite life span. Models based on integro-differential and integral equations with various kinds of delay arguments are considered. For nonlinear equations, the operators are linearized according to the modified Newton-Kantorovich scheme. Direct quadrature and simple iteration methods are used to discretize linear equations. These methods are constructed in the paper: an iterative method for solving a nonlinear integro-differential equation on the semiaxis $(-\infty, 0]$, a direct method for solving the signal recovery problem, and iterative methods for solving a nonlinear Volterra integral equation with a constant delay. Special quadrature formulas based on orthogonal Lagger polynomials are used to approximate improper integrals on the semiaxis. The results of numerical experiments confirm the convergence of suggested methods. The proposed approaches can also be applied to other classes of nonlinear equations with delays.
Keywords: integro-differential equations, nonlinear Volterra integral equations, delay arguments, the Newton-Kantorovich method, linearization, direct discretization.
@article{SVMO_2023_25_1_a4,
     author = {A. N. Tynda},
     title = {Methods of numerical analysis for some integral dynamical systems with delay arguments},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {565--577},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2023_25_1_a4/}
}
TY  - JOUR
AU  - A. N. Tynda
TI  - Methods of numerical analysis for some integral dynamical systems with delay arguments
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2023
SP  - 565
EP  - 577
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2023_25_1_a4/
LA  - ru
ID  - SVMO_2023_25_1_a4
ER  - 
%0 Journal Article
%A A. N. Tynda
%T Methods of numerical analysis for some integral dynamical systems with delay arguments
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2023
%P 565-577
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2023_25_1_a4/
%G ru
%F SVMO_2023_25_1_a4
A. N. Tynda. Methods of numerical analysis for some integral dynamical systems with delay arguments. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 25 (2023) no. 1, pp. 565-577. http://geodesic.mathdoc.fr/item/SVMO_2023_25_1_a4/

[1] H. Brunner, Collocation methods for Volterra integral and related functional differential equations, Cambridge University Press, Cambridge, 2004, 612 pp. | DOI | MR | Zbl

[2] F. Caliò, E. Marchetti, R. Pavani, “About the deficient spline collocation method for particular differential and integral equations with delay”, Rend. Sem. Mat. Univ. Pol. Torino, 61 (2003), 287–300 | MR | Zbl

[3] A. Cardone, I. D. Prete, C. Nitsch, “Gaussian direct quadrature methods for double delay Volterra integral equations”, Electronic Transactions on Numerical Analysis, 35 (2009), 201–216 | MR | Zbl

[4] E. Messina, E. Russo, A. Vecchio, “A convolution test equation for double delay integral equations”, Journal of Computational and Applied Mathematics, 228:2 (2009), 589–599 | DOI | MR | Zbl

[5] J. M. Gushing, Volterra Integrodifferential Equations in Population Dynamics, Mathematics of Biology, 80, Springer, Berlin, 2010 | DOI | MR

[6] L.V. Kantorovich, G.P. Akilov, Functional Analysis, 2nd ed., Pergamon, 1982, 589 pp. | MR | Zbl

[7] A. F. Verlan, V. S. Sizikov, Integralnye uravneniya: metody, algoritmy, programmy, Naukova Dumka, Kiev, 1986, 544 pp. | MR

[8] Z. Popović, “Basic mathematical models in economic-ecological control”, Facta Universitatis. Economics and Organization, 5:3 (2008), 251–262