Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2023_25_1_a4, author = {A. N. Tynda}, title = {Methods of numerical analysis for some integral dynamical systems with delay arguments}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {565--577}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2023_25_1_a4/} }
TY - JOUR AU - A. N. Tynda TI - Methods of numerical analysis for some integral dynamical systems with delay arguments JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2023 SP - 565 EP - 577 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2023_25_1_a4/ LA - ru ID - SVMO_2023_25_1_a4 ER -
A. N. Tynda. Methods of numerical analysis for some integral dynamical systems with delay arguments. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 25 (2023) no. 1, pp. 565-577. http://geodesic.mathdoc.fr/item/SVMO_2023_25_1_a4/
[1] H. Brunner, Collocation methods for Volterra integral and related functional differential equations, Cambridge University Press, Cambridge, 2004, 612 pp. | DOI | MR | Zbl
[2] F. Caliò, E. Marchetti, R. Pavani, “About the deficient spline collocation method for particular differential and integral equations with delay”, Rend. Sem. Mat. Univ. Pol. Torino, 61 (2003), 287–300 | MR | Zbl
[3] A. Cardone, I. D. Prete, C. Nitsch, “Gaussian direct quadrature methods for double delay Volterra integral equations”, Electronic Transactions on Numerical Analysis, 35 (2009), 201–216 | MR | Zbl
[4] E. Messina, E. Russo, A. Vecchio, “A convolution test equation for double delay integral equations”, Journal of Computational and Applied Mathematics, 228:2 (2009), 589–599 | DOI | MR | Zbl
[5] J. M. Gushing, Volterra Integrodifferential Equations in Population Dynamics, Mathematics of Biology, 80, Springer, Berlin, 2010 | DOI | MR
[6] L.V. Kantorovich, G.P. Akilov, Functional Analysis, 2nd ed., Pergamon, 1982, 589 pp. | MR | Zbl
[7] A. F. Verlan, V. S. Sizikov, Integralnye uravneniya: metody, algoritmy, programmy, Naukova Dumka, Kiev, 1986, 544 pp. | MR
[8] Z. Popović, “Basic mathematical models in economic-ecological control”, Facta Universitatis. Economics and Organization, 5:3 (2008), 251–262