Link as a complete invariant of Morse-Smale 3-diffeomorphisms
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 25 (2023) no. 1, pp. 531-541.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider gradient-like Morse-Smale diffeomorphisms defined on the three-dimensional sphere $\mathbb S^3$. For such diffeomorphisms, a complete invariant of topological conjugacy was obtained in the works of C. Bonatti, V. Grines, V. Medvedev, E. Pecu. It is an equivalence class of a set of homotopically non-trivially embedded tori and Klein bottles embedded in some closed 3-manifold whose fundamental group admits an epimorphism to the group $\mathbb Z$. Such an invariant is called the scheme of the gradient-like diffeomorphism $f:\mathbb S^3\to\mathbb S^3$. We single out a class $G$ of diffeomorphisms whose complete invariant is a topologically simpler object, namely, the link of essential knots in the manifold $\mathbb S^2\times\mathbb S^1$. The diffeomorphisms under consideration are determined by the fact that their non-wandering set contains a unique source, and the closures of stable saddle point manifolds bound three-dimensional balls with pairwise disjoint interiors. We prove that, in addition to the closure of these balls, a diffeomorphism of the class $G$ contains exactly one nonwandering point, which is a fixed sink. It is established that the total invariant of topological conjugacy of class $G$ diffeomorphisms is the space of orbits of unstable saddle separatrices in the basin of this sink. It is shown that the space of orbits is a link of non-contractible knots in the manifold $\mathbb{S}^2 \times \mathbb{S}^1$ and that the equivalence of links is tantamount to the equivalence of schemes. We also provide a realization of diffeomorphisms of the considered class along an arbitrary link consisting of essential nodes in the manifold $\mathbb{S}^2 \times \mathbb{S}^1$.
Keywords: Morse-Smale diffeomorphism, knot, link, topological conjugacy
Mots-clés : invariant.
@article{SVMO_2023_25_1_a1,
     author = {A. A. Nozdrinov and A. I. Pochinka},
     title = {Link as a complete invariant of {Morse-Smale} 3-diffeomorphisms},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {531--541},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2023_25_1_a1/}
}
TY  - JOUR
AU  - A. A. Nozdrinov
AU  - A. I. Pochinka
TI  - Link as a complete invariant of Morse-Smale 3-diffeomorphisms
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2023
SP  - 531
EP  - 541
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2023_25_1_a1/
LA  - ru
ID  - SVMO_2023_25_1_a1
ER  - 
%0 Journal Article
%A A. A. Nozdrinov
%A A. I. Pochinka
%T Link as a complete invariant of Morse-Smale 3-diffeomorphisms
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2023
%P 531-541
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2023_25_1_a1/
%G ru
%F SVMO_2023_25_1_a1
A. A. Nozdrinov; A. I. Pochinka. Link as a complete invariant of Morse-Smale 3-diffeomorphisms. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 25 (2023) no. 1, pp. 531-541. http://geodesic.mathdoc.fr/item/SVMO_2023_25_1_a1/

[1] Bonatti C., Grines V., Pochinka O., “Topological classification of Morse-Smale diffeomorphisms on 3-manifolds”, Duke Mathematical Journal, 168:13 (2019), 2507–2558 | DOI | MR | Zbl

[2] Bonatti C., Grines V., “Knots as topological invariants for gradient-like diffeomorphisms of the sphere {$S^3$}”, Journal of Dynamical and Control Systems, 6:4 (2000), 579–602 | DOI | MR | Zbl

[3] Pochinka O., Talanova E., Shubin D., Knot as a complete invariant of a Morse-Smale 3-diffeomorphism with four fixed points, 2022, arXiv: 2209.04815

[4] Smale S., “Differentiable dynamical systems”, Bulletin of the American mathematical Society, 73:6 (1967), 747–817 | DOI | MR | Zbl

[5] V. Z.Grines, E. Ya. Gurevich, E. V. Zhuzhoma, O. V. Pochinka, “Klassifikatsiya sistem Morsa-Smeila i topologicheskaya struktura nesuschikh mnogoobrazii”, Uspekhi matematicheskikh nauk, 74 (2019), 41–116 | DOI | Zbl

[6] Grines V. Z., Zhuzhoma E. V., Medvedev V. S., Pochinka O. V., “Global attractor and repeller of Morse-Smale diffeomorphisms”, Proceedings of the Steklov Institute of Mathematics, 271:1 (2010), 103–124 | DOI | MR | Zbl

[7] V. Grines, T. Medvedev, O. Pochinka, Dynamical Systems on 2- and 3-Manifolds., Switzerland: Springer, 2016, 295 pp. | DOI | MR

[8] Rolfsen D., Knots and links., Vancouver: AMS Chelsea Pub, 2003, 439 pp. | MR